Short description : Probability Theory
Comparison of the Poisson distribution (black lines) and the binomial distribution with n = 10 (red circles), n = 20 (blue circles), n = 1000 (green circles). All distributions have a mean of 5. The horizontal axis shows the number of events k . As n gets larger, the Poisson distribution becomes an increasingly better approximation for the binomial distribution with the same mean.
In probability theory , the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution , under certain conditions.[ 1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem .
Theorem
Let p n be a sequence of real numbers in [ 0 , 1 ] such that the sequence n p n converges to a finite limit λ . Then:
lim n → ∞ ( n k ) p n k ( 1 − p n ) n − k = e − λ λ k k !
First proof
Assume λ > 0 (the case λ = 0 is easier). Then
lim n → ∞ ( n k ) p n k ( 1 − p n ) n − k = lim n → ∞ n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ! ( λ n ( 1 + o ( 1 ) ) ) k ( 1 − λ n ( 1 + o ( 1 ) ) ) n − k = lim n → ∞ n k + O ( n k − 1 ) k ! λ k n k ( 1 − λ n ( 1 + o ( 1 ) ) ) n ( 1 − λ n ( 1 + o ( 1 ) ) ) − k = lim n → ∞ λ k k ! ( 1 − λ n ( 1 + o ( 1 ) ) ) n .
Since
lim n → ∞ ( 1 − λ n ( 1 + o ( 1 ) ) ) n = e − λ
this leaves
( n k ) p k ( 1 − p ) n − k ≃ λ k e − λ k ! .
Alternative proof
Using Stirling's approximation , it can be written:
( n k ) p k ( 1 − p ) n − k = n ! ( n − k ) ! k ! p k ( 1 − p ) n − k ≃ 2 π n ( n e ) n 2 π ( n − k ) ( n − k e ) n − k k ! p k ( 1 − p ) n − k = n n − k n n e − k ( n − k ) n − k k ! p k ( 1 − p ) n − k .
Letting n → ∞ and n p = λ :
( n k ) p k ( 1 − p ) n − k ≃ n n p k ( 1 − p ) n − k e − k ( n − k ) n − k k ! = n n ( λ n ) k ( 1 − λ n ) n − k e − k n n − k ( 1 − k n ) n − k k ! = λ k ( 1 − λ n ) n − k e − k ( 1 − k n ) n − k k ! ≃ λ k ( 1 − λ n ) n e − k ( 1 − k n ) n k ! .
As n → ∞ , ( 1 − x n ) n → e − x so:
( n k ) p k ( 1 − p ) n − k ≃ λ k e − λ e − k e − k k ! = λ k e − λ k !
Ordinary generating functions
It is also possible to demonstrate the theorem through the use of ordinary generating functions of the binomial distribution:
G bin ( x ; p , N ) ≡ ∑ k = 0 N [ ( N k ) p k ( 1 − p ) N − k ] x k = [ 1 + ( x − 1 ) p ] N
by virtue of the binomial theorem . Taking the limit N → ∞ while keeping the product p N ≡ λ constant, it can be seen:
lim N → ∞ G bin ( x ; p , N ) = lim N → ∞ [ 1 + λ ( x − 1 ) N ] N = e λ ( x − 1 ) = ∑ k = 0 ∞ [ e − λ λ k k ! ] x k
which is the OGF for the Poisson distribution. (The second equality holds due to the definition of the exponential function .)
See also
References
↑ Papoulis, Athanasios; Pillai, S. Unnikrishna. Probability, Random Variables, and Stochastic Processes (4th ed.).
Original source: https://en.wikipedia.org/wiki/Poisson limit theorem. Read more