Polyadic algebras (more recently called Halmos algebras[1]) are algebraic structures introduced by Paul Halmos. They are related to first-order logic analogous to the relationship between Boolean algebras and propositional logic (see Lindenbaum–Tarski algebra). There are other ways to relate first-order logic to algebra, including Tarski's cylindric algebras[1] (when equality is part of the logic) and Lawvere's functorial semantics (a categorical approach).[2]
Original source: https://en.wikipedia.org/wiki/Polyadic algebra.
Read more |