Pound-force | |
---|---|
Unit system | English Engineering units, British Gravitational System |
Symbol | lbf |
Conversions | |
1 lbf in ... | ... is equal to ... |
SI units | 4.448222 N |
CGS units | 444,822.2 dyn |
Absolute English System | 32.17405 pdl |
The pound of force or pound-force (symbol: lbf,[1] sometimes lbf,[2]) is a unit of force used in some systems of measurement, including English Engineering units[lower-alpha 1] and the foot–pound–second system.[3]
Pound-force should not be confused with pound-mass (lb), often simply called "pound", which is a unit of mass; nor should these be confused with foot-pound (ft⋅lbf), a unit of energy, or pound-foot (lbf⋅ft), a unit of torque.
The pound-force is equal to the gravitational force exerted on a mass of one avoirdupois pound on the surface of Earth. Since the 18th century, the unit has been used in low-precision measurements, for which small changes in Earth's gravity (which varies from equator to pole by up to half a percent) can safely be neglected.[4]
The 20th century, however, brought the need for a more precise definition, requiring a standardized value for acceleration due to gravity.
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, 9.80665 m/s2 (32.174049 ft/s2).[5][6][7]
The standard values of acceleration of the standard gravitational field (gn) and the international avoirdupois pound (lb) result in a pound-force equal to 4.4482216152605 N.[lower-alpha 2]
[math]\displaystyle{ \begin{align} 1\,\text{lbf} &= 1\,\text{lb} \times g_\text{n} \\ &= 1\,\text{lb} \times 9.80665\,\tfrac{\text{m}}{\text{s}^2} / 0.3048\,\tfrac{\text{m}}{\text{ft}}\\ &\approx 1\,\text{lb} \times 32.174049\,\mathrm{\tfrac{ft}{s^2}}\\ &\approx 32.174049\,\mathrm{\tfrac{ft {\cdot} lb}{s^2}} \\ 1\,\text{lbf} &= 1\,\text{lb} \times 0.45359237\,\tfrac{\text{kg}}{\text{lb}} \times g_\text{n} \\ &= 0.45359237\,\text{kg} \times 9.80665\,\tfrac{\text{m}}{\text{s}^2}\\ &= 4.4482216152605\,\text{N} \end{align} }[/math]
This definition can be rephrased in terms of the slug. A slug has a mass of 32.174049 lb. A pound-force is the amount of force required to accelerate a slug at a rate of 1 ft/s2, so:
[math]\displaystyle{ \begin{align} 1\,\text{lbf} &= 1\,\text{slug} \times 1\,\tfrac{\text{ft}}{\text{s}^2} \\ &= 1\,\tfrac{\text{slug} \cdot \text{ft}}{\text{s}^2} \end{align} }[/math]
newton (SI unit) |
dyne | kilogram-force, kilopond |
pound-force | poundal | |
1 N | ≡ 1 kg⋅m/s2 | = 105 dyn | ≈ 0.10197 kp | ≈ 0.22481 lbf | ≈ 7.2330 pdl |
1 dyn | = 10−5 N | ≡ 1 g⋅cm/s2 | ≈ 1.0197 × 10−6 kp | ≈ 2.2481 × 10−6 lbf | ≈ 7.2330 × 10−5 pdl |
1 kp | = 9.80665 N | = 980665 dyn | ≡ gn ⋅ (1 kg) | ≈ 2.2046 lbf | ≈ 70.932 pdl |
1 lbf | ≈ 4.448222 N | ≈ 444822 dyn | ≈ 0.45359 kp | ≡ gn ⋅ (1 lb) | ≈ 32.174 pdl |
1 pdl | ≈ 0.138255 N | ≈ 13825 dyn | ≈ 0.014098 kp | ≈ 0.031081 lbf | ≡ 1 lb⋅ft/s2 |
The value of gn as used in the official definition of the kilogram-force is used here for all gravitational units. |
In some contexts, the term "pound" is used almost exclusively to refer to the unit of force and not the unit of mass. In those applications, the preferred unit of mass is the slug, i.e. lbf⋅s2/ft. In other contexts, the unit "pound" refers to a unit of mass. The international standard symbol for the pound as a unit of mass is lb.[8]
Base |
Force | Weight | Mass | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2nd law of motion | m = F/a | F = W ⋅ a/g | F = m ⋅ a | |||||||||||
System | BG | GM | EE | M | AE | CGS | MTS | SI | ||||||
Acceleration (a) | ft/s2 | m/s2 | ft/s2 | m/s2 | ft/s2 | [[Physics:Gal (unit) | Gal}}]] | m/s2 | m/s2 | |||||
Mass (m) | slug | hyl | pound-mass | kilogram | [[Pound (mass) | pound}}]] | [[Gram | gram}}]] | [[Tonne | tonne}}]] | [[Kilogram | kilogram}}]] | ||
Force (F), weight (W) |
[[Pound (force) | pound}}]] | kilopond | pound-force | kilopond | [[Poundal | poundal}}]] | [[Physics:Dyne | dyne}}]] | [[Sthène | sthène}}]] | [[Newton (unit) | newton}}]] | |
Pressure (p) | [[Pounds per square inch | pounds per square inch}}]] | [[Technical atmosphere | technical atmosphere}}]] | [[Pounds per square inch | pounds-force per square inch}}]] | [[Physics:Atmosphere (unit) | atmosphere}}]] | poundals per square foot | [[Physics:Barye | barye}}]] | pieze | [[Pascal (unit) | pascal}}]] |
In the "engineering" systems (middle column), the weight of the mass unit (pound-mass) on Earth's surface is approximately equal to the force unit (pound-force). This is convenient because one pound mass exerts one pound force due to gravity. Note, however, unlike the other systems the force unit is not equal to the mass unit multiplied by the acceleration unit[11]—the use of Newton's second law, F = m ⋅ a, requires another factor, gc, usually taken to be 32.174049 (lb⋅ft)/(lbf⋅s2). "Absolute" systems are coherent systems of units: by using the slug as the unit of mass, the "gravitational" FPS system (left column) avoids the need for such a constant. The SI is an "absolute" metric system with kilogram and meter as base units.
The term pound of thrust is an alternative name for pound-force in specific contexts. It is frequently seen in US sources on jet engines and rocketry, some of which continue to use the FPS notation. For example, the thrust produced by each of the Space Shuttle's two Solid Rocket Boosters was 3,300,000 pounds-force (14.7 MN), together 6,600,000 pounds-force (29.4 MN).[12][13]
The value adopted in the International Service of Weights and Measures for the standard acceleration due to Earth's gravity is 980.665 cm/s2, value already stated in the laws of some countries.
This value was the conventional reference for calculating the kilogram-force, a unit of force whose use has been deprecated since the introduction of SI.
Original source: https://en.wikipedia.org/wiki/Pound (force).
Read more |