In the mathematical field of descriptive set theory, a subset [math]\displaystyle{ A }[/math] of a Polish space [math]\displaystyle{ X }[/math] is projective if it is [math]\displaystyle{ \boldsymbol{\Sigma}^1_n }[/math] for some positive integer [math]\displaystyle{ n }[/math]. Here [math]\displaystyle{ A }[/math] is
The choice of the Polish space [math]\displaystyle{ Y }[/math] in the third clause above is not very important; it could be replaced in the definition by a fixed uncountable Polish space, say Baire space or Cantor space or the real line.
There is a close relationship between the relativized analytical hierarchy on subsets of Baire space (denoted by lightface letters [math]\displaystyle{ \Sigma }[/math] and [math]\displaystyle{ \Pi }[/math]) and the projective hierarchy on subsets of Baire space (denoted by boldface letters [math]\displaystyle{ \boldsymbol{\Sigma} }[/math] and [math]\displaystyle{ \boldsymbol{\Pi} }[/math]). Not every [math]\displaystyle{ \boldsymbol{\Sigma}^1_n }[/math] subset of Baire space is [math]\displaystyle{ \Sigma^1_n }[/math]. It is true, however, that if a subset X of Baire space is [math]\displaystyle{ \boldsymbol{\Sigma}^1_n }[/math] then there is a set of natural numbers A such that X is [math]\displaystyle{ \Sigma^{1,A}_n }[/math]. A similar statement holds for [math]\displaystyle{ \boldsymbol{\Pi}^1_n }[/math] sets. Thus the sets classified by the projective hierarchy are exactly the sets classified by the relativized version of the analytical hierarchy. This relationship is important in effective descriptive set theory.
A similar relationship between the projective hierarchy and the relativized analytical hierarchy holds for subsets of Cantor space and, more generally, subsets of any effective Polish space.
Original source: https://en.wikipedia.org/wiki/Projective hierarchy.
Read more |