Proofs involving the Laplace–Beltrami operator

From HandWiki - Reading time: 2 min


Short description: Proofs

This article relates to proofs involving the Laplace–Beltrami operator.

−div is adjoint to d

The claim is made that −div is adjoint to d:

Mdf(X)ω=MfdivXω

Proof of the above statement:

M(fdiv(X)+X(f))ω=M(fX+X(f))ω
=MXfω=MdιXfω=MιXfω

If f has compact support, then the last integral vanishes, and we have the desired result.

Laplace–de Rham operator

One may prove that the Laplace–de Rham operator is equivalent to the definition of the Laplace–Beltrami operator, when acting on a scalar function f. This proof reads as:

Δf=dδf+δdf=δdf=δifdxi
=difdxi=d(εiJ|g|ifdxJ)
=εiJj(|g|if)dxjdxJ=1|g|i(|g|if)voln
=1|g|i(|g|if),

where voln; is the volume form and ε is the completely antisymmetric Levi-Civita symbol. Note that in the above, the italic lower-case index i is a single index, whereas the upper-case Roman J stands for all of the remaining n − 1 indices. Notice that the Laplace–de Rham operator is actually the negative Laplace–Beltrami operator; this minus sign follows from the conventional definition of the properties of the codifferential. Unfortunately, Δ is used to denote both; reader beware.

Properties

Given scalar functions f and h, and a real number a, the Laplacian has the property:

Δ(fh)=fΔh+2ifih+hΔf.

Proof

Δ(fh)=δdfh=δ(fdh+hdf)=d(fdh)+d(h*df)
=(fddh+dfdh+dhdf+hddf)
=fddh+(dfdh+dhdf)+hddf
=fΔh
+(ifdxiεjJ|g|jhdxJ+ihdxiεjJ|g|jfdxJ)
+hΔf
=fΔh+(ifih+ihif)voln+hΔf
=fΔh+2ifih+hΔf

where f and h are scalar functions.

References





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Proofs_involving_the_Laplace–Beltrami_operator
1 |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF