Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Puig subgroup

From HandWiki - Reading time: 1 min

Short description: Characteristic subgroup in mathematical finite group theory

In mathematical finite group theory, the Puig subgroup, introduced by Puig (1976), is a characteristic subgroup of a p-group analogous to the Thompson subgroup.

Definition

If H is a subgroup of a group G, then LG(H) is the subgroup of G generated by the abelian subgroups normalized by H.

The subgroups Ln of G are defined recursively by

  • L0 is the trivial subgroup
  • Ln+1 = LG(Ln)

They have the property that

  • L0L2L4... ⊆ ...L5L3L1

The Puig subgroup L(G) is the intersection of the subgroups Ln for n odd, and the subgroup L*(G) is the union of the subgroups Ln for n even.

Properties

Puig proved that if G is a (solvable) group of odd order, p is a prime, and S is a Sylow p-subgroup of G, and the p-core of G is trivial, then the center Z(L(S)) of the Puig subgroup of S is a normal subgroup of G.

References




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Puig_subgroup
18 views | Status: cached on August 11 2024 05:40:21
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF