In calculus, the racetrack principle describes the movement and growth of two functions in terms of their derivatives.
This principle is derived from the fact that if a horse named Frank Fleetfeet always runs faster than a horse named Greg Gooseleg, then if Frank and Greg start a race from the same place and the same time, then Frank will win. More briefly, the horse that starts fast and stays fast wins.
In symbols:
or, substituting ≥ for > produces the theorem
which can be proved in a similar way
This principle can be proven by considering the function [math]\displaystyle{ h(x) = f(x) - g(x) }[/math]. If we were to take the derivative we would notice that for [math]\displaystyle{ x\gt 0 }[/math],
Also notice that [math]\displaystyle{ h(0) = 0 }[/math]. Combining these observations, we can use the mean value theorem on the interval [math]\displaystyle{ [0, x] }[/math] and get
By assumption, [math]\displaystyle{ x\gt 0 }[/math], so multiplying both sides by [math]\displaystyle{ x }[/math] gives [math]\displaystyle{ f(x) - g(x) \gt 0 }[/math]. This implies [math]\displaystyle{ f(x) \gt g(x) }[/math].
The statement of the racetrack principle can slightly generalized as follows;
as above, substituting ≥ for > produces the theorem
This generalization can be proved from the racetrack principle as follows:
Consider functions [math]\displaystyle{ f_2(x)=f(x+a) }[/math] and [math]\displaystyle{ g_2(x)=g(x+a) }[/math]. Given that [math]\displaystyle{ f'(x)\gt g'(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math], and [math]\displaystyle{ f(a)=g(a) }[/math],
[math]\displaystyle{ f_2'(x)\gt g_2'(x) }[/math] for all [math]\displaystyle{ x\gt 0 }[/math], and [math]\displaystyle{ f_2(0)=g_2(0) }[/math], which by the proof of the racetrack principle above means [math]\displaystyle{ f_2(x)\gt g_2(x) }[/math] for all [math]\displaystyle{ x\gt 0 }[/math] so [math]\displaystyle{ f(x)\gt g(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math].
The racetrack principle can be used to prove a lemma necessary to show that the exponential function grows faster than any power function. The lemma required is that
for all real [math]\displaystyle{ x }[/math]. This is obvious for [math]\displaystyle{ x\lt 0 }[/math] but the racetrack principle is required for [math]\displaystyle{ x\gt 0 }[/math]. To see how it is used we consider the functions
and
Notice that [math]\displaystyle{ f(0) = g(0) }[/math] and that
because the exponential function is always increasing (monotonic) so [math]\displaystyle{ f'(x)\gt g'(x) }[/math]. Thus by the racetrack principle [math]\displaystyle{ f(x)\gt g(x) }[/math]. Thus,
for all [math]\displaystyle{ x\gt 0 }[/math].
Original source: https://en.wikipedia.org/wiki/Racetrack principle.
Read more |