Let X be a subset of Rn. Then the reach of X is defined as
- [math]\displaystyle{ \text{reach}(X) :=
\sup \{r \in \mathbb{R}:
\forall x \in \mathbb{R}^n\setminus X\text{ with }{\rm dist}(x,X) \lt r \text{ exists a unique closest point }y \in X\text{ such that }{\rm dist}(x,y)= {\rm dist}(x,X)\}.
}[/math]
Examples
Shapes that have reach infinity include
- a single point,
- a straight line,
- a full square, and
- any convex set.
The graph of ƒ(x) = |x| has reach zero.
A circle of radius r has reach r.
References
- Federer, Herbert (1969), Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, New York: Springer-Verlag New York Inc., pp. xiv+676, ISBN 978-3-540-60656-7
| Original source: https://en.wikipedia.org/wiki/Reach (mathematics). Read more |