Group theory → Lie groups Lie groups |
---|
In mathematics, the finite-dimensional representations of the complex classical Lie groups [math]\displaystyle{ GL(n,\mathbb{C}) }[/math], [math]\displaystyle{ SL(n,\mathbb{C}) }[/math], [math]\displaystyle{ O(n,\mathbb{C}) }[/math], [math]\displaystyle{ SO(n,\mathbb{C}) }[/math], [math]\displaystyle{ Sp(2n,\mathbb{C}) }[/math], can be constructed using the general representation theory of semisimple Lie algebras. The groups [math]\displaystyle{ SL(n,\mathbb{C}) }[/math], [math]\displaystyle{ SO(n,\mathbb{C}) }[/math], [math]\displaystyle{ Sp(2n,\mathbb{C}) }[/math] are indeed simple Lie groups, and their finite-dimensional representations coincide[1] with those of their maximal compact subgroups, respectively [math]\displaystyle{ SU(n) }[/math], [math]\displaystyle{ SO(n) }[/math], [math]\displaystyle{ Sp(n) }[/math]. In the classification of simple Lie algebras, the corresponding algebras are
However, since the complex classical Lie groups are linear groups, their representations are tensor representations. Each irreducible representation is labelled by a Young diagram, which encodes its structure and properties.
Let [math]\displaystyle{ V=\mathbb{C}^n }[/math] be the defining representation of the general linear group [math]\displaystyle{ GL(n,\mathbb{C}) }[/math]. Tensor representations are the subrepresentations of [math]\displaystyle{ V^{\otimes k} }[/math] (these are sometimes called polynomial representations). The irreducible subrepresentations of [math]\displaystyle{ V^{\otimes k} }[/math] are the images of [math]\displaystyle{ V }[/math] by Schur functors [math]\displaystyle{ \mathbb{S}^\lambda }[/math] associated to partitions [math]\displaystyle{ \lambda }[/math] of [math]\displaystyle{ k }[/math] into at most [math]\displaystyle{ n }[/math] integers, i.e. to Young diagrams of size [math]\displaystyle{ \lambda_1+\cdots + \lambda_n = k }[/math] with [math]\displaystyle{ \lambda_{n+1}=0 }[/math]. (If [math]\displaystyle{ \lambda_{n+1}\gt 0 }[/math] then [math]\displaystyle{ \mathbb{S}^\lambda(V)=0 }[/math].) Schur functors are defined using Young symmetrizers of the symmetric group [math]\displaystyle{ S_k }[/math], which acts naturally on [math]\displaystyle{ V^{\otimes k} }[/math]. We write [math]\displaystyle{ V_\lambda = \mathbb{S}^\lambda(V) }[/math].
The dimensions of these irreducible representations are[1]
where [math]\displaystyle{ h_\lambda(i,j) }[/math] is the hook length of the cell [math]\displaystyle{ (i,j) }[/math] in the Young diagram [math]\displaystyle{ \lambda }[/math].
Examples of tensor representations:
Tensor representation of [math]\displaystyle{ GL(n,\mathbb{C}) }[/math] | Dimension | Young diagram |
---|---|---|
Trivial representation | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ () }[/math] |
Determinant representation | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ (1^n) }[/math] |
Defining representation [math]\displaystyle{ V }[/math] | [math]\displaystyle{ n }[/math] | [math]\displaystyle{ (1) }[/math] |
Symmetric representation [math]\displaystyle{ \text{Sym}^kV }[/math] | [math]\displaystyle{ \binom{n+k-1}{k} }[/math] | [math]\displaystyle{ (k) }[/math] |
Antisymmetric representation [math]\displaystyle{ \Lambda^k V }[/math] | [math]\displaystyle{ \binom{n}{k} }[/math] | [math]\displaystyle{ (1^k) }[/math] |
Not all irreducible representations of [math]\displaystyle{ GL(n,\mathbb C) }[/math] are tensor representations. In general, irreducible representations of [math]\displaystyle{ GL(n,\mathbb C) }[/math] are mixed tensor representations, i.e. subrepresentations of [math]\displaystyle{ V^{\otimes r} \otimes (V^*)^{\otimes s} }[/math], where [math]\displaystyle{ V^* }[/math] is the dual representation of [math]\displaystyle{ V }[/math] (these are sometimes called rational representations). In the end, the set of irreducible representations of [math]\displaystyle{ GL(n,\mathbb C) }[/math] is labeled by non increasing sequences of [math]\displaystyle{ n }[/math] integers [math]\displaystyle{ \lambda_1\geq \dots \geq \lambda_n }[/math]. If [math]\displaystyle{ \lambda_k \geq 0, \lambda_{k+1} \leq 0 }[/math], we can associate to [math]\displaystyle{ (\lambda_1, \dots ,\lambda_n) }[/math] the pair of Young tableaux [math]\displaystyle{ ([\lambda_1\dots\lambda_k],[-\lambda_n,\dots,-\lambda_{k+1}]) }[/math]. This shows that irreducible representations of [math]\displaystyle{ GL(n,\mathbb C) }[/math] can be labeled by pairs of Young tableaux . Let us denote [math]\displaystyle{ V_{\lambda\mu} = V_{\lambda_1,\dots,\lambda_n} }[/math] the irreducible representation of [math]\displaystyle{ GL(n,\mathbb C) }[/math] corresponding to the pair [math]\displaystyle{ (\lambda,\mu) }[/math] or equivalently to the sequence [math]\displaystyle{ (\lambda_1,\dots,\lambda_n) }[/math]. With these notations,
Two representations [math]\displaystyle{ V_{\lambda},V_{\lambda'} }[/math] of [math]\displaystyle{ GL(n,\mathbb{C}) }[/math] are equivalent as representations of the special linear group [math]\displaystyle{ SL(n,\mathbb{C}) }[/math] if and only if there is [math]\displaystyle{ k\in\mathbb{Z} }[/math] such that [math]\displaystyle{ \forall i,\ \lambda_i-\lambda'_i=k }[/math].[1] For instance, the determinant representation [math]\displaystyle{ V_{(1^n)} }[/math] is trivial in [math]\displaystyle{ SL(n,\mathbb{C}) }[/math], i.e. it is equivalent to [math]\displaystyle{ V_{()} }[/math]. In particular, irreducible representations of [math]\displaystyle{ SL(n,\mathbb C) }[/math] can be indexed by Young tableaux, and are all tensor representations (not mixed).
The unitary group is the maximal compact subgroup of [math]\displaystyle{ GL(n,\mathbb C) }[/math]. The complexification of its Lie algebra [math]\displaystyle{ \mathfrak u(n) = \{a \in \mathcal M(n,\mathbb C), a^\dagger + a = 0\} }[/math] is the algebra [math]\displaystyle{ \mathfrak{gl}(n,\mathbb C) }[/math]. In Lie theoretic terms, [math]\displaystyle{ U(n) }[/math] is the compact real form of [math]\displaystyle{ GL(n,\mathbb C) }[/math], which means that complex linear, continuous irreducible representations of the latter are in one-to-one correspondence with complex linear, algebraic irreps of the former, via the inclusion [math]\displaystyle{ U(n) \rightarrow GL(n,\mathbb C) }[/math]. [5]
Tensor products of finite-dimensional representations of [math]\displaystyle{ GL(n,\mathbb{C}) }[/math] are given by the following formula:[6]
where [math]\displaystyle{ \Gamma^{\nu\rho}_{\lambda_1\mu_1,\lambda_2\mu_2} = 0 }[/math] unless [math]\displaystyle{ |\nu| \leq |\lambda_1| + |\lambda_2| }[/math] and [math]\displaystyle{ |\rho| \leq |\mu_1| + |\mu_2| }[/math]. Calling [math]\displaystyle{ l(\lambda) }[/math] the number of lines in a tableau, if [math]\displaystyle{ l(\lambda_1) + l(\lambda_2) + l(\mu_1) + l(\mu_2) \leq n }[/math], then
where the natural integers [math]\displaystyle{ c_{\lambda,\mu}^\nu }[/math] are Littlewood-Richardson coefficients.
Below are a few examples of such tensor products:
[math]\displaystyle{ R_1 }[/math] | [math]\displaystyle{ R_2 }[/math] | Tensor product [math]\displaystyle{ R_1 \otimes R_2 }[/math] |
---|---|---|
[math]\displaystyle{ V_{\lambda()} }[/math] | [math]\displaystyle{ V_{\mu()} }[/math] | [math]\displaystyle{ \sum_\nu c^\nu_{\lambda \mu}V_{\nu()} }[/math] |
[math]\displaystyle{ V_{\lambda()} }[/math] | [math]\displaystyle{ V_{()\mu} }[/math] | [math]\displaystyle{ \sum_{\kappa,\nu,\rho} c^\lambda_{\kappa\nu} c^{\mu}_{\kappa\rho} V_{\nu\rho} }[/math] |
[math]\displaystyle{ V_{()(1)} }[/math] | [math]\displaystyle{ V_{(1)()} }[/math] | [math]\displaystyle{ V_{(1)(1)} + V_{()()} }[/math] |
[math]\displaystyle{ V_{()(1)} }[/math] | [math]\displaystyle{ V_{(k)()} }[/math] | [math]\displaystyle{ V_{(k)(1)} + V_{(k-1)()} }[/math] |
[math]\displaystyle{ V_{(1)()} }[/math] | [math]\displaystyle{ V_{(k)()} }[/math] | [math]\displaystyle{ V_{(k+1)()} + V_{(k,1)()} }[/math] |
[math]\displaystyle{ V_{(1)(1)} }[/math] | [math]\displaystyle{ V_{(1)(1)} }[/math] | [math]\displaystyle{ V_{(2)(2)} + V_{(2)(11)} + V_{(11)(2)} + V_{(11)(11)} + 2V_{(1)(1)} + V_{()()} }[/math] |
In addition to the Lie group representations described here, the orthogonal group [math]\displaystyle{ O(n,\mathbb{C}) }[/math] and special orthogonal group [math]\displaystyle{ SO(n,\mathbb{C}) }[/math] have spin representations, which are projective representations of these groups, i.e. representations of their universal covering groups.
Since [math]\displaystyle{ O(n,\mathbb{C}) }[/math] is a subgroup of [math]\displaystyle{ GL(n,\mathbb{C}) }[/math], any irreducible representation of [math]\displaystyle{ GL(n,\mathbb{C}) }[/math] is also a representation of [math]\displaystyle{ O(n,\mathbb{C}) }[/math], which may however not be irreducible. In order for a tensor representation of [math]\displaystyle{ O(n,\mathbb{C}) }[/math] to be irreducible, the tensors must be traceless.[7]
Irreducible representations of [math]\displaystyle{ O(n,\mathbb{C}) }[/math] are parametrized by a subset of the Young diagrams associated to irreducible representations of [math]\displaystyle{ GL(n,\mathbb{C}) }[/math]: the diagrams such that the sum of the lengths of the first two columns is at most [math]\displaystyle{ n }[/math].[7] The irreducible representation [math]\displaystyle{ U_\lambda }[/math] that corresponds to such a diagram is a subrepresentation of the corresponding [math]\displaystyle{ GL(n,\mathbb{C}) }[/math] representation [math]\displaystyle{ V_\lambda }[/math]. For example, in the case of symmetric tensors,[1]
The antisymmetric tensor [math]\displaystyle{ U_{(1^n)} }[/math] is a one-dimensional representation of [math]\displaystyle{ O(n,\mathbb{C}) }[/math], which is trivial for [math]\displaystyle{ SO(n,\mathbb{C}) }[/math]. Then [math]\displaystyle{ U_{(1^n)}\otimes U_\lambda = U_{\lambda'} }[/math] where [math]\displaystyle{ \lambda' }[/math] is obtained from [math]\displaystyle{ \lambda }[/math] by acting on the length of the first column as [math]\displaystyle{ \tilde{\lambda}_1\to n-\tilde{\lambda}_1 }[/math].
For example, the irreducible representations of [math]\displaystyle{ O(3,\mathbb{C}) }[/math] correspond to Young diagrams of the types [math]\displaystyle{ (k\geq 0),(k\geq 1,1),(1,1,1) }[/math]. The irreducible representations of [math]\displaystyle{ SO(3,\mathbb{C}) }[/math] correspond to [math]\displaystyle{ (k\geq 0) }[/math], and [math]\displaystyle{ \dim U_{(k)}=2k+1 }[/math]. On the other hand, the dimensions of the spin representations of [math]\displaystyle{ SO(3,\mathbb{C}) }[/math] are even integers.[1]
The dimensions of irreducible representations of [math]\displaystyle{ SO(n,\mathbb{C}) }[/math] are given by a formula that depends on the parity of [math]\displaystyle{ n }[/math]:[4]
There is also an expression as a factorized polynomial in [math]\displaystyle{ n }[/math]:[4]
where [math]\displaystyle{ \lambda_i,\tilde{\lambda}_i,h_\lambda(i,j) }[/math] are respectively row lengths, column lengths and hook lengths. In particular, antisymmetric representations have the same dimensions as their [math]\displaystyle{ GL(n,\mathbb{C}) }[/math] counterparts, [math]\displaystyle{ \dim U_{(1^k)}=\dim V_{(1^k)} }[/math], but symmetric representations do not,
In the stable range [math]\displaystyle{ |\mu|+|\nu|\leq \left[\frac{n}{2}\right] }[/math], the tensor product multiplicities that appear in the tensor product decomposition [math]\displaystyle{ U_\lambda\otimes U_\mu = \oplus_\nu N_{\lambda,\mu,\nu} U_\nu }[/math] are Newell-Littlewood numbers, which do not depend on [math]\displaystyle{ n }[/math].[8] Beyond the stable range, the tensor product multiplicities become [math]\displaystyle{ n }[/math]-dependent modifications of the Newell-Littlewood numbers.[9][8][10] For example, for [math]\displaystyle{ n\geq 12 }[/math], we have
Since the orthogonal group is a subgroup of the general linear group, representations of [math]\displaystyle{ GL(n) }[/math] can be decomposed into representations of [math]\displaystyle{ O(n) }[/math]. The decomposition of a tensor representation is given in terms of Littlewood-Richardson coefficients [math]\displaystyle{ c_{\lambda,\mu}^\nu }[/math] by the Littlewood restriction rule[11]
where [math]\displaystyle{ 2\mu }[/math] is a partition into even integers. The rule is valid in the stable range [math]\displaystyle{ 2|\nu|,\tilde{\lambda}_1+\tilde{\lambda}_2\leq n }[/math]. The generalization to mixed tensor representations is
Similar branching rules can be written for the symplectic group.[11]
The finite-dimensional irreducible representations of the symplectic group [math]\displaystyle{ Sp(2n,\mathbb{C}) }[/math] are parametrized by Young diagrams with at most [math]\displaystyle{ n }[/math] rows. The dimension of the corresponding representation is[7]
There is also an expression as a factorized polynomial in [math]\displaystyle{ n }[/math]:[4]
Just like in the case of the orthogonal group, tensor product multiplicities are given by Newell-Littlewood numbers in the stable range, and modifications thereof beyond the stable range.
Original source: https://en.wikipedia.org/wiki/Representations of classical Lie groups.
Read more |