In additive number theory and combinatorics, a restricted sumset has the form
where [math]\displaystyle{ A_1,\ldots,A_n }[/math] are finite nonempty subsets of a field F and [math]\displaystyle{ P(x_1,\ldots,x_n) }[/math] is a polynomial over F.
If [math]\displaystyle{ P }[/math] is a constant non-zero function, for example [math]\displaystyle{ P(x_1,\ldots,x_n)=1 }[/math] for any [math]\displaystyle{ x_1,\ldots,x_n }[/math], then [math]\displaystyle{ S }[/math] is the usual sumset [math]\displaystyle{ A_1+\cdots+A_n }[/math] which is denoted by [math]\displaystyle{ nA }[/math] if [math]\displaystyle{ A_1=\cdots=A_n=A. }[/math]
When
S is written as [math]\displaystyle{ A_1\dotplus\cdots\dotplus A_n }[/math] which is denoted by [math]\displaystyle{ n^{\wedge} A }[/math] if [math]\displaystyle{ A_1=\cdots=A_n=A. }[/math]
Note that |S| > 0 if and only if there exist [math]\displaystyle{ a_1\in A_1,\ldots,a_n\in A_n }[/math] with [math]\displaystyle{ P(a_1,\ldots,a_n)\not=0. }[/math]
The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime p and nonempty subsets A and B of the prime order cyclic group [math]\displaystyle{ \mathbb{Z}/p\mathbb{Z} }[/math] we have the inequality[1][2][3]
where [math]\displaystyle{ A+B := \{a+b \pmod p \mid a \in A, b \in B\} }[/math], i.e. we're using modular arithmetic. It can be generalised to arbitrary (not necessarily abelian) groups using a Dyson transform. If [math]\displaystyle{ A, B }[/math] are subsets of a group [math]\displaystyle{ G }[/math], then[4]
where [math]\displaystyle{ p(G) }[/math] is the size of the smallest nontrivial subgroup of [math]\displaystyle{ G }[/math] (we set it to [math]\displaystyle{ 1 }[/math] if there is no such subgroup).
We may use this to deduce the Erdős–Ginzburg–Ziv theorem: given any sequence of 2n−1 elements in the cyclic group [math]\displaystyle{ \mathbb{Z}/n\mathbb{Z} }[/math], there are n elements that sum to zero modulo n. (Here n does not need to be prime.)[5][6]
A direct consequence of the Cauchy-Davenport theorem is: Given any sequence S of p−1 or more nonzero elements, not necessarily distinct, of [math]\displaystyle{ \mathbb{Z}/p\mathbb{Z} }[/math], every element of [math]\displaystyle{ \mathbb{Z}/p\mathbb{Z} }[/math] can be written as the sum of the elements of some subsequence (possibly empty) of S.[7]
Kneser's theorem generalises this to general abelian groups.[8]
The Erdős–Heilbronn conjecture posed by Paul Erdős and Hans Heilbronn in 1964 states that [math]\displaystyle{ |2^\wedge A| \ge \min\{p,\, 2|A|-3\} }[/math] if p is a prime and A is a nonempty subset of the field Z/pZ.[9] This was first confirmed by J. A. Dias da Silva and Y. O. Hamidoune in 1994[10] who showed that
where A is a finite nonempty subset of a field F, and p(F) is a prime p if F is of characteristic p, and p(F) = ∞ if F is of characteristic 0. Various extensions of this result were given by Noga Alon, M. B. Nathanson and I. Ruzsa in 1996,[11] Q. H. Hou and Zhi-Wei Sun in 2002,[12] and G. Karolyi in 2004.[13]
A powerful tool in the study of lower bounds for cardinalities of various restricted sumsets is the following fundamental principle: the combinatorial Nullstellensatz.[14] Let [math]\displaystyle{ f(x_1,\ldots,x_n) }[/math] be a polynomial over a field [math]\displaystyle{ F }[/math]. Suppose that the coefficient of the monomial [math]\displaystyle{ x_1^{k_1}\cdots x_n^{k_n} }[/math] in [math]\displaystyle{ f(x_1,\ldots,x_n) }[/math] is nonzero and [math]\displaystyle{ k_1+\cdots+k_n }[/math] is the total degree of [math]\displaystyle{ f(x_1,\ldots,x_n) }[/math]. If [math]\displaystyle{ A_1,\ldots,A_n }[/math] are finite subsets of [math]\displaystyle{ F }[/math] with [math]\displaystyle{ |A_i|\gt k_i }[/math] for [math]\displaystyle{ i=1,\ldots,n }[/math], then there are [math]\displaystyle{ a_1\in A_1,\ldots,a_n\in A_n }[/math] such that [math]\displaystyle{ f(a_1,\ldots,a_n)\not = 0 }[/math].
This tool was rooted in a paper of N. Alon and M. Tarsi in 1989,[15] and developed by Alon, Nathanson and Ruzsa in 1995–1996,<ref name="Alon1996">{{cite journal
|author1=Alon, Noga |author2=Nathanson, Melvyn B. |author3=Ruzsa, Imre | url = http://www.math.tau.ac.il/~nogaa/PDFS/anrf3.pdf | title = The polynomial method and restricted sums of congruence classes | journal = Journal of Number Theory | volume = 56 | issue = 2 | year = 1996 | pages = 404–417 | mr = 1373563
and reformulated by Alon in 1999.[14]
<ref>
tag; no text was provided for refs named Alon1996
Original source: https://en.wikipedia.org/wiki/Restricted sumset.
Read more |