Table of Contents Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Ribbon theory

From HandWiki - Reading time: 2 min

Ribbon theory is a strand of mathematics within topology that has seen particular application as regards DNA.[1]

Concepts

  • Link is the integer number of turns of the ribbon around its axis;
  • Twist is the rate of rotation of the ribbon around its axis;
  • Writhe is a measure of non-planarity of the ribbon's axis curve.

Work by Gheorghe Călugăreanu, James H. White, and F. Brock Fuller led to the Călugăreanu–White–Fuller theorem that Link = Writhe + Twist.[2][3]

See also

References

  • Adams, Colin (2004), The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, ISBN 0-8218-3678-1 
  • Călugăreanu, Gheorghe (1959), "L'intégrale de Gauss et l'analyse des nœuds tridimensionnels", Revue de Mathématiques Pure et Appliquées 4: 5–20 
  • Călugăreanu, Gheorghe (1961), "Sur les classes d'isotopie des noeuds tridimensionels et leurs invariants", Czechoslovak Mathematical Journal 11: 588–625, doi:10.21136/CMJ.1961.100486 
  • Fuller, F. Brock (1971), "The writhing number of a space curve", Proceedings of the National Academy of Sciences of the United States of America 68 (4): 815–819, doi:10.1073/pnas.68.4.815, PMID 5279522 
  • White, James H. (1969), "Self-linking and the Gauss integral in higher dimensions", American Journal of Mathematics 91 (3): 693–728, doi:10.2307/2373348 

Notes






Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Ribbon_theory
11 views | Status: cached on August 05 2024 12:32:24
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF