In mathematics, Schwartz space [math]\displaystyle{ \mathcal{S} }[/math] is the function space of all functions whose derivatives are rapidly decreasing. This space has the important property that the Fourier transform is an automorphism on this space. This property enables one, by duality, to define the Fourier transform for elements in the dual space [math]\displaystyle{ \mathcal{S}^* }[/math] of [math]\displaystyle{ \mathcal{S} }[/math], that is, for tempered distributions. A function in the Schwartz space is sometimes called a Schwartz function.
Schwartz space is named after French mathematician Laurent Schwartz.
Let [math]\displaystyle{ \mathbb{N} }[/math] be the set of non-negative integers, and for any [math]\displaystyle{ n \in \mathbb{N} }[/math], let [math]\displaystyle{ \mathbb{N}^n := \underbrace{\mathbb{N} \times \dots \times \mathbb{N}}_{n \text{ times}} }[/math] be the n-fold Cartesian product. The Schwartz space or space of rapidly decreasing functions on [math]\displaystyle{ \mathbb{R}^n }[/math] is the function space[math]\displaystyle{ S \left(\mathbb{R}^n, \mathbb{C}\right) := \left \{ f \in C^\infty(\mathbb{R}^n, \mathbb{C}) \mid \forall \alpha, \beta \in\mathbb{N}^n, \|f\|_{\alpha,\beta} \lt \infty\right \}, }[/math]where [math]\displaystyle{ C^{\infty}(\mathbb{R}^n, \mathbb{C}) }[/math] is the function space of smooth functions from [math]\displaystyle{ \mathbb{R}^n }[/math] into [math]\displaystyle{ \mathbb{C} }[/math], and[math]\displaystyle{ \|f\|_{\alpha,\beta}:= \sup_{x\in\mathbb{R}^n} \left| x^\alpha (D^{\beta} f)(x) \right|. }[/math] Here, [math]\displaystyle{ \sup }[/math] denotes the supremum, and we used multi-index notation, i.e. [math]\displaystyle{ x^\alpha:=x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n} }[/math] and [math]\displaystyle{ D^\beta:=\partial_1^{\beta_1}\partial_2^{\beta_2}\ldots \partial_n^{\beta_n} }[/math].
To put common language to this definition, one could consider a rapidly decreasing function as essentially a function f(x) such that f(x), f ′(x), f ′′(x), ... all exist everywhere on R and go to zero as x→ ±∞ faster than any reciprocal power of x. In particular, S(Rn, C) is a subspace of the function space C∞(Rn, C) of smooth functions from Rn into C.
Original source: https://en.wikipedia.org/wiki/Schwartz space.
Read more |