Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Shelah cardinal

From HandWiki - Reading time: 1 min

In axiomatic set theory, Shelah cardinals are a kind of large cardinals. A cardinal [math]\displaystyle{ \kappa }[/math] is called Shelah iff for every [math]\displaystyle{ f:\kappa\rightarrow\kappa }[/math], there exists a transitive class [math]\displaystyle{ N }[/math] and an elementary embedding [math]\displaystyle{ j:V\rightarrow N }[/math] with critical point [math]\displaystyle{ \kappa }[/math]; and [math]\displaystyle{ V_{j(f)(\kappa )}\subset N }[/math]. A Shelah cardinal has a normal ultrafilter containing the set of weakly hyper-Woodin cardinals below it.

References

  • Ernest Schimmerling, Woodin cardinals, Shelah cardinals and the Mitchell-Steel core model, Proceedings of the American Mathematical Society 130/11, pp. 3385-3391, 2002, online




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Shelah_cardinal
14 views | Status: cached on July 25 2024 14:38:31
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF