CuPy

From HandWiki - Reading time: 5 min

Short description: Numerical programming library for the Python programming language
CuPy
Original author(s)Seiya Tokui
Developer(s)Community, Preferred Networks, Inc.
Initial releaseSeptember 2, 2015; 8 years ago (2015-09-02).[1]
Stable release
v10.5.0[2] / May 26, 2022; 2 years ago (2022-05-26)[2]
Preview release
v11.0.0b3[2] / May 26, 2022; 2 years ago (2022-05-26)[2]
Repositorygithub.com/cupy/cupy
Written inPython, Cython, CUDA
Operating systemLinux, Windows
PlatformCross-platform
TypeNumerical analysis
LicenseMIT
Websitecupy.dev

CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them.[3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU. CuPy supports NVIDIA CUDA GPU platform, and AMD ROCm GPU platform starting in v9.0.[4][5]

CuPy has been initially developed as a backend of Chainer deep learning framework, and later established as an independent project in 2017.[6]

CuPy is a part of the NumPy ecosystem array libraries[7] and is widely adopted to utilize GPU with Python,[8] especially in high-performance computing environments such as Summit,[9] Perlmutter,[10] EULER,[11] and ABCI.[12]

CuPy is a NumFOCUS affiliated project.[13]

Features

CuPy implements NumPy/SciPy-compatible APIs, as well as features to write user-defined GPU kernels or access low-level APIs.[14][15]

NumPy-compatible APIs

The same set of APIs defined in the NumPy package (numpy.*) are available under cupy.* package.

SciPy-compatible APIs

The same set of APIs defined in the SciPy package (scipy.*) are available under cupyx.scipy.* package.

User-defined GPU kernels

  • Kernel templates for element-wise and reduction operations
  • Raw kernel (CUDA C/C++)
  • Just-in-time transpiler (JIT)
  • Kernel fusion

Distributed computing

  • Distributed communication package (cupyx.distributed), providing collective and peer-to-peer primitives

Low-level CUDA features

  • Stream and event
  • Memory pool
  • Profiler
  • Host API binding
  • CUDA Python support[16]

Interoperability

Examples

Array creation

>>> import cupy as cp
>>> x = cp.array([1, 2, 3])
>>> x
array([1, 2, 3])
>>> y = cp.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Basic operations

>>> import cupy as cp
>>> x = cp.arange(12).reshape(3, 4).astype(cp.float32)
>>> x
array([[ 0.,  1.,  2.,  3.],
       [ 4.,  5.,  6.,  7.],
       [ 8.,  9., 10., 11.]], dtype=float32)
>>> x.sum(axis=1)
array([ 6., 22., 38.], dtype=float32)

Raw CUDA C/C++ kernel

>>> import cupy as cp
>>> kern = cp.RawKernel(r'''
... extern "C" __global__
... void multiply_elemwise(const float* in1, const float* in2, float* out) {
...     int tid = blockDim.x * blockIdx.x + threadIdx.x;
...     out[tid] = in1[tid] * in2[tid];
... }
... ''', 'multiply_elemwise')
>>> in1 = cp.arange(16, dtype=cp.float32).reshape(4, 4)
>>> in2 = cp.arange(16, dtype=cp.float32).reshape(4, 4)
>>> out = cp.zeros((4, 4), dtype=cp.float32)
>>> kern((4,), (4,), (in1, in2, out))  # grid, block and arguments
>>> out
array([[  0.,   1.,   4.,   9.],
       [ 16.,  25.,  36.,  49.],
       [ 64.,  81., 100., 121.],
       [144., 169., 196., 225.]], dtype=float32)

Applications

See also

References

  1. "Release v1.3.0 – chainer/chainer". https://github.com/chainer/chainer/releases/v1.3.0. 
  2. 2.0 2.1 2.2 2.3 "Releases – cupy/cupy". https://github.com/cupy/cupy/releases. 
  3. Okuta, Ryosuke; Unno, Yuya; Nishino, Daisuke; Hido, Shohei; Loomis, Crissman (2017). "CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations". Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf. 
  4. "CuPy 9.0 Brings AMD GPU Support To This Numpy-Compatible Library - Phoronix". 29 April 2021. https://www.phoronix.com/scan.php?page=news_item&px=CuPy-9.0-Released. 
  5. "AMD Leads High Performance Computing Towards Exascale and Beyond". 28 June 2021. https://ir.amd.com/news-events/press-releases/detail/1012/amd-leads-high-performance-computing-towards-exascale-and. "Most recently, CuPy, an open-source array library with Python, has expanded its traditional GPU support with the introduction of version 9.0 that now offers support for the ROCm stack for GPU-accelerated computing." 
  6. "Preferred Networks released Version 2 of Chainer, an Open Source framework for Deep Learning - Preferred Networks, Inc.". 2 June 2017. https://www.preferred.jp/en/news/pr20170602/. 
  7. "NumPy". numpy.org. https://numpy.org/. 
  8. Gorelick, Micha; Ozsvald, Ian (April 2020). High Performance Python: Practical Performant Programming for Humans (2nd ed.). O'Reilly Media, Inc.. p. 190. ISBN 9781492055020. 
  9. Oak Ridge Leadership Computing Facility. "Installing CuPy". OLCF User Documentation. https://docs.olcf.ornl.gov/software/python/cupy.html. 
  10. National Energy Research Scientific Computing Center. "Using Python on Perlmutter". NERSC Documentation. https://docs.nersc.gov/development/languages/python/using-python-perlmutter/#cupy. 
  11. ETH Zurich. "CuPy". ScientificComputing. https://scicomp.ethz.ch/wiki/CuPy. 
  12. National Institute of Advanced Industrial Science and Technology. "Chainer". ABCI 2.0 User Guide. https://docs.abci.ai/en/apps/chainer/. 
  13. "Affiliated Projects - NumFOCUS". https://numfocus.org/sponsored-projects/affiliated-projects. 
  14. "Overview". CuPy documentation. https://docs.cupy.dev/en/latest/overview.html. 
  15. "Comparison Table". CuPy documentation. https://docs.cupy.dev/en/latest/reference/comparison.html. 
  16. "CUDA Python | NVIDIA Developer". https://developer.nvidia.com/cuda-python. 
  17. "Welcome to DLPack's documentation!". DLPack 0.6.0 documentation. https://dmlc.github.io/dlpack/latest/. 
  18. "CUDA Array Interface (Version 3)". Numba 0.55.2+0.g2298ad618.dirty-py3.7-linux-x86_64.egg documentation. https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html. 
  19. "NEP 13 — A mechanism for overriding Ufuncs — NumPy Enhancement Proposals". numpy.org. https://numpy.org/neps/nep-0013-ufunc-overrides.html. 
  20. "NEP 18 — A dispatch mechanism for NumPy's high level array functions — NumPy Enhancement Proposals". numpy.org. https://numpy.org/neps/nep-0018-array-function-protocol.html. 
  21.  , Wikidata Q99413970
  22. "2021 report - Python Data APIs Consortium". https://data-apis.org/files/2021_annual_report_DataAPIs_Consortium.pdf. 
  23. "Purpose and scope". Python array API standard 2021.12 documentation. https://data-apis.org/array-api/latest/purpose_and_scope.html. 
  24. "Install spaCy". spaCy Usage Documentation. https://spacy.io/usage#gpu. 
  25. Patel, Ankur A.; Arasanipalai, Ajay Uppili (May 2021). Applied Natural Language Processing in the Enterprise (1st ed.). O'Reilly Media, Inc.. p. 68. ISBN 9781492062578. 
  26. "Python Package Introduction". xgboost 1.6.1 documentation. https://xgboost.readthedocs.io/en/stable/python/python_intro.html#data-interface. 
  27. "UCBerkeleySETI/turbo_seti: turboSETI -- python based SETI search algorithm.". https://github.com/UCBerkeleySETI/turbo_seti#turbo_seti. 
  28. "Open GPU Data Science | RAPIDS". https://rapids.ai/. 
  29. "API Docs". RAPIDS Docs. https://docs.rapids.ai/api. 
  30. "Efficient Data Sharing between CuPy and RAPIDS". https://medium.com/rapids-ai/using-rapids-memory-manager-with-cupy-8d08fe8f58fa. 
  31. "10 Minutes to cuDF and CuPy". https://medium.com/rapids-ai/10-minutes-to-cudf-and-cupy-e131cac0439b. 
  32. Alex, Rogozhnikov (2022). "Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation". International Conference on Learning Representations. https://openreview.net/forum?id=oapKSVM2bcj. 
  33. "arogozhnikov/einops: Deep learning operations reinvented (for pytorch, tensorflow, jax and others)". https://github.com/arogozhnikov/einops. 
  34. Tokui, Seiya; Okuta, Ryosuke; Akiba, Takuya; Niitani, Yusuke; Ogawa, Toru; Saito, Shunta; Suzuki, Shuji; Uenishi, Kota et al. (2019). "Chainer: A Deep Learning Framework for Accelerating the Research Cycle". Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. doi:10.1145/3292500.3330756. https://dl.acm.org/doi/10.1145/3292500.3330756. 

External links




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Software:CuPy
15 views | Status: cached on August 01 2024 05:32:30
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF