Original author(s) | François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau, Christian Gagné |
---|---|
Developer(s) | François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner |
Initial release | 2009 |
Written in | Python |
Operating system | Cross-platform |
Type | Evolutionary computation framework |
License | LGPL |
Website | github |
Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas.[1][2][3] It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution, traffic flow[4] and estimation of distribution algorithm. It is developed at Université Laval since 2009.
The following code gives a quick overview how the Onemax problem optimization with genetic algorithm can be implemented with DEAP.
import array import random from deap import creator, base, tools, algorithms creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax) toolbox = base.Toolbox() toolbox.register("attr_bool", random.randint, 0, 1) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 100) toolbox.register("population", tools.initRepeat, list, toolbox.individual) evalOneMax = lambda individual: (sum(individual),) toolbox.register("evaluate", evalOneMax) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutFlipBit, indpb=0.05) toolbox.register("select", tools.selTournament, tournsize=3) population = toolbox.population(n=300) NGEN = 40 for gen in range(NGEN): offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1) fits = toolbox.map(toolbox.evaluate, offspring) for fit, ind in zip(fits, offspring): ind.fitness.values = fit population = offspring