Karabo

From HandWiki - Reading time: 3 min

Short description: Scientific SCADA framework
Karabo
Karabo Logo.png
Karabo Screenshot.png
Developer(s)European XFEL
Initial releaseJune 14th, 2023
Stable release
2.19.0
Repositoryhttps://github.com/European-XFEL/Karabo
Written inPython (programming language), C++
Operating systemFramework: Linux, Gui: Linux, macOS, Microsoft Windows
Platformx86-64, ARM
LicenseGNU General Public License version 3, Mozilla Public License version 2

Karabo is an open source supervisory control and data acquisition (SCADA) framework developed at the European X-ray Free Electron Laser facility[1] since 2010.[2][3] The framework can be used to build a distributed control system, in which concrete functionality such as hardware control, or a command sequence, is implemented in form of so-called devices. Devices may be implemented in Python[4][5] or C++.[6]

Similar to systems like EPICS and TANGO, Karabo is developed chiefly with control of large scientific infrastructure and experiments in mind. The system emphasises fully asynchronous, and event driven distributed messaging via a central message broker (AMQP/RabbitMQ). Developers can additionally leverage tightly integrated peer-to-peer (p2p) TCP channels to transfer large data volumes at rates of multiple gigabytes per second. A standalone graphical user interface (GUI) client application, which can be used to design and view synaptic views of the distributed system, is provided alongside the framework.[2]

At the European XFEL, Karabo is used to operate the photon systems[7][8] and experiment end stations (instruments)[9][10][11] of the facility. In 2023, the EuXFEL control system integrated 3.5 million control parameters distributed over 25,000 devices on ca. 100 physical servers.[2] Additionally, the facility's scientific data acquisition system, and online detector calibration pipelines[12] are implemented in Karabo, and process data rates of approximately 20Gbyte/s.[13][14][15]

Karabo is free and open source software under the MPL2 (framework) and GPL3 (GUI application) licenses.[16]

References

  1. "European XFEL". https://www.xfel.eu/. 
  2. 2.0 2.1 2.2 Göries, D.; Ehsan, W.; Flucke, G.; Annakkappala, N.; Bondar, V.; Costa, R.; Esenov, S.; Giovanetti, G. et al. (2024-01-04). "The Karabo SCADA System at the European XFEL" (in en). Synchrotron Radiation News: 1–7. doi:10.1080/08940886.2023.2277650. ISSN 0894-0886. https://www.tandfonline.com/doi/full/10.1080/08940886.2023.2277650. 
  3. "The Karabo SCADA Framework". https://www.xfel.eu/organization/scientific_and_technical_groups/controls/karabo/index_eng.html. 
  4. "Welcome to HowToMiddlelayer's documentation! — HowToMiddleLayer 1.0 documentation". https://howtomiddlelayer.readthedocs.io/en/latest/. 
  5. "Welcome to HowToBound's documentation! — HowToBound 1.0 documentation". https://rtd.xfel.eu/docs/howtobound/en/latest/. 
  6. "Welcome to HowToCpp's documentation! — HowToCpp 1.0 documentation". https://rtd.xfel.eu/docs/howtocpp/en/latest/. 
  7. Grünert, Jan; Carbonell, Marc Planas; Dietrich, Florian; Falk, Torben; Freund, Wolfgang; Koch, Andreas; Kujala, Naresh; Laksman, Joakim et al. (2019-08-02). "X-ray photon diagnostics at the European XFEL". Journal of Synchrotron Radiation 26 (5): 1422–1431. doi:10.1107/s1600577519006611. ISSN 1600-5775. PMID 31490130. Bibcode2019JSynR..26.1422G. http://dx.doi.org/10.1107/s1600577519006611. 
  8. Sinn, H.; Dommach, M.; Dickert, B.; Di Felice, M.; Dong, X.; Eidam, J.; Finze, D.; Freijo-Martin, I. et al. (2019-05-01). "The SASE1 X-ray beam transport system". Journal of Synchrotron Radiation 26 (3): 692–699. doi:10.1107/S1600577519003461. ISSN 1600-5775. PMID 31074432. Bibcode2019JSynR..26..692S. https://scripts.iucr.org/cgi-bin/paper?S1600577519003461. 
  9. Mancuso, A. P.; Aquila, A.; Batchelor, L.; Bean, R. J.; Bielecki, J.; Borchers, G.; Doerner, K.; Giewekemeyer, K. et al. (2019-05-01). "The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation" (in en). Journal of Synchrotron Radiation 26 (3): 660–676. doi:10.1107/S1600577519003308. ISSN 1600-5775. PMID 31074429. PMC 6510195. Bibcode2019JSynR..26..660M. https://journals.iucr.org/s/issues/2019/03/00/ig5074/. 
  10. Galler, A.; Gawelda, W.; Biednov, M.; Bomer, C.; Britz, A.; Brockhauser, S.; Choi, T.-K.; Diez, M. et al. (2019-09-01). "Scientific instrument Femtosecond X-ray Experiments (FXE): instrumentation and baseline experimental capabilities" (in en). Journal of Synchrotron Radiation 26 (5): 1432–1447. doi:10.1107/S1600577519006647. ISSN 1600-5775. PMID 31490131. PMC 6730617. Bibcode2019JSynR..26.1432G. https://journals.iucr.org/s/issues/2019/05/00/xq5006/. 
  11. Zastrau, U.; Appel, K.; Baehtz, C.; Baehr, O.; Batchelor, L.; Berghäuser, A.; Banjafar, M.; Brambrink, E. et al. (2021-09-01). "The High Energy Density Scientific Instrument at the European XFEL" (in en). Journal of Synchrotron Radiation 28 (5): 1393–1416. doi:10.1107/S1600577521007335. ISSN 1600-5775. PMID 34475288. PMC 8415338. Bibcode2021JSynR..28.1393Z. https://journals.iucr.org/s/issues/2021/05/00/ay5578/. 
  12. Schmidt, Philipp; Ahmed, Karim; Danilevski, Cyril; Hammer, David; Rosca, Robert; Kluyver, Thomas; Michelat, Thomas; Sobolev, Egor et al. (2024). "Turning European XFEL raw data into user data". Frontiers in Physics 11. doi:10.3389/fphy.2023.1321524. ISSN 2296-424X. Bibcode2024FrP....1121524S. 
  13. Hauf, Steffen; Heisen, Burkhard; Aplin, Steve; Beg, Marijan; Bergemann, Martin; Bondar, Valerii; Boukhelef, Djelloul; Danilevsky, Cyril et al. (2019-08-09). "The Karabo distributed control system". Journal of Synchrotron Radiation 26 (5): 1448–1461. doi:10.1107/s1600577519006696. ISSN 1600-5775. PMID 31490132. Bibcode2019JSynR..26.1448H. http://dx.doi.org/10.1107/s1600577519006696. 
  14. Wiedorn, M.O.; Oberthuer, D.; Barty, A.; Chapman, H.N. (2018-10-10). Serial Femtosecond Crystallography at Megahertz pulse rates. doi:10.2210/pdb6ftr/pdb. http://dx.doi.org/10.2210/pdb6ftr/pdb. Retrieved 2024-01-07. 
  15. Blanchet, Clement E.; Round, Adam; Mertens, Haydyn D. T.; Ayyer, Kartik; Graewert, Melissa; Awel, Salah; Franke, Daniel; Dörner, Katerina et al. (2023-10-18). "Form factor determination of biological molecules with X-ray free electron laser small-angle scattering (XFEL-SAS)" (in en). Communications Biology 6 (1): 1057. doi:10.1038/s42003-023-05416-7. ISSN 2399-3642. PMID 37853181. 
  16. Karabo SCADA Framework, European XFEL, 2023-12-21, https://github.com/European-XFEL/Karabo, retrieved 2024-01-07 





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Software:Karabo
3 views | Status: cached on September 14 2024 12:31:09
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF