In set theory, a standard model for a theory [math]\displaystyle{ T }[/math] is a model [math]\displaystyle{ M }[/math] for [math]\displaystyle{ T }[/math] where the membership relation [math]\displaystyle{ \in_M }[/math] is the same as the membership relation [math]\displaystyle{ \in }[/math] of the set theoretical universe [math]\displaystyle{ V }[/math] (restricted to the domain of [math]\displaystyle{ M }[/math]). In other words, [math]\displaystyle{ M }[/math] is a substructure of [math]\displaystyle{ V }[/math]. A standard model [math]\displaystyle{ M }[/math] that satisfies the additional transitivity condition that [math]\displaystyle{ x \in y \in M }[/math] implies [math]\displaystyle{ x \in M }[/math] is a standard transitive model (or simply a transitive model).
Usually, when one talks about a model [math]\displaystyle{ M }[/math] of set theory, it is assumed that [math]\displaystyle{ M }[/math] is a set model, i.e. the domain of [math]\displaystyle{ M }[/math] is a set in [math]\displaystyle{ V }[/math]. If the domain of [math]\displaystyle{ M }[/math] is a proper class, then [math]\displaystyle{ M }[/math] is a class model. An inner model is necessarily a class model.
Original source: https://en.wikipedia.org/wiki/Standard model (set theory).
Read more |