In mathematics, the three spheres inequality bounds the [math]\displaystyle{ L^2 }[/math] norm of a harmonic function on a given sphere in terms of the [math]\displaystyle{ L^2 }[/math] norm of this function on two spheres, one with bigger radius and one with smaller radius.
Let [math]\displaystyle{ u }[/math] be an harmonic function on [math]\displaystyle{ \mathbb R^n }[/math]. Then for all [math]\displaystyle{ 0 \lt r_1 \lt r \lt r_2 }[/math] one has
where [math]\displaystyle{ S_\rho := \{ x \in \mathbb R^n \colon \vert x \vert = \rho\} }[/math] for [math]\displaystyle{ \rho\gt 0 }[/math] is the sphere of radius [math]\displaystyle{ \rho }[/math] centred at the origin and where
Here we use the following normalisation for the [math]\displaystyle{ L^2 }[/math] norm:
Original source: https://en.wikipedia.org/wiki/Three spheres inequality.
Read more |