Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Top (mathematics)

From HandWiki - Reading time: 1 min

In the context of a module M over a ring R, the top of M is the largest semisimple quotient module of M if it exists. For finite-dimensional k-algebras (k a field) R, if rad(M) denotes the intersection of all proper maximal submodules of M (the radical of the module), then the top of M is M/rad(M). In the case of local rings with maximal ideal P, the top of M is M/PM. In general if R is a semilocal ring (=semi-artinian ring), that is, if R/Rad(R) is an Artinian ring, where Rad(R) is the Jacobson radical of R, then M/rad(M) is a semisimple module and is the top of M. This includes the cases of local rings and finite dimensional algebras over fields.

See also

References

  • David Eisenbud, Commutative algebra with a view toward Algebraic Geometry ISBN 0-387-94269-6






Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Top_(mathematics)
11 views | Status: cached on July 16 2024 19:44:13
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF