Toronto function

From HandWiki - Reading time: 1 min


In mathematics, the Toronto function T(m,n,r) is a modification of the confluent hypergeometric function defined by (Heatley 1943), Weisstein, as

T(m,n,r)=r2nm+1er2Γ(12m+12)Γ(n+1)1F1(12m+12;n+1;r2).
Later, Heatley (1964) recomputed to 12 decimals the table of the M(R)-function, and gave some corrections of the original tables. The table was also extended from x = 4 to x = 16 (Heatley, 1965). An example of the Toronto function has appeared in a study on the theory of turbulence (Heatley, 1965).

References

  • Heatley, A. H. (1943), "A short table of the Toronto function", Trans. Roy. Soc. Canada Sect. III. 37: 13–29 
  • Heatley, A. H. (1964), "A short table of the Toronto function", Mathematics of Computation, 18, No.88: 361
  • Heatley, A. H. (1965), "An extension of the table of the Toronto function", Mathematics of Computation, 19, No.89: 118-123
  • Weisstein, E. W., "Toronto Function", From Math World - A Wolfram Web Resource




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Toronto_function
15 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF