In linear algebra, two-dimensional singular-value decomposition (2DSVD) computes the low-rank approximation of a set of matrices such as 2D images or weather maps in a manner almost identical to SVD (singular-value decomposition) which computes the low-rank approximation of a single matrix (or a set of 1D vectors).
Let matrix [math]\displaystyle{ X = [\mathbf x_1, \ldots, \mathbf x_n] }[/math] contains the set of 1D vectors which have been centered. In PCA/SVD, we construct covariance matrix [math]\displaystyle{ F }[/math] and Gram matrix [math]\displaystyle{ G }[/math]
and compute their eigenvectors [math]\displaystyle{ U = [\mathbf u_1, \ldots, \mathbf u_n] }[/math] and [math]\displaystyle{ V = [\mathbf v_1, \ldots, \mathbf v_n] }[/math]. Since [math]\displaystyle{ VV^\mathsf{T} = I }[/math] and [math]\displaystyle{ UU^\mathsf{T} = I }[/math] we have
If we retain only [math]\displaystyle{ K }[/math] principal eigenvectors in [math]\displaystyle{ U , V }[/math], this gives low-rank approximation of [math]\displaystyle{ X }[/math].
Here we deal with a set of 2D matrices [math]\displaystyle{ (X_1,\ldots,X_n) }[/math]. Suppose they are centered [math]\displaystyle{ \sum_i X_i =0 }[/math]. We construct row–row and column–column covariance matrices
in exactly the same manner as in SVD, and compute their eigenvectors [math]\displaystyle{ U }[/math] and [math]\displaystyle{ V }[/math]. We approximate [math]\displaystyle{ X_i }[/math] as
in identical fashion as in SVD. This gives a near optimal low-rank approximation of [math]\displaystyle{ (X_1,\ldots,X_n) }[/math] with the objective function
Error bounds similar to Eckard–Young theorem also exist.
2DSVD is mostly used in image compression and representation.
Original source: https://en.wikipedia.org/wiki/Two-dimensional singular-value decomposition.
Read more |