In the mathematical field of topology a uniform isomorphism or uniform homeomorphism is a special isomorphism between uniform spaces that respects uniform properties. Uniform spaces with uniform maps form a category. An isomorphism between uniform spaces is called a uniform isomorphism.
A function [math]\displaystyle{ f }[/math] between two uniform spaces [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] is called a uniform isomorphism if it satisfies the following properties
In other words, a uniform isomorphism is a uniformly continuous bijection between uniform spaces whose inverse is also uniformly continuous.
If a uniform isomorphism exists between two uniform spaces they are called uniformly isomorphic or uniformly equivalent.
Uniform embeddings
A uniform embedding is an injective uniformly continuous map [math]\displaystyle{ i : X \to Y }[/math] between uniform spaces whose inverse [math]\displaystyle{ i^{-1} : i(X) \to X }[/math] is also uniformly continuous, where the image [math]\displaystyle{ i(X) }[/math] has the subspace uniformity inherited from [math]\displaystyle{ Y. }[/math]
The uniform structures induced by equivalent norms on a vector space are uniformly isomorphic.
Original source: https://en.wikipedia.org/wiki/Uniform isomorphism.
Read more |