It has n(k – 1) + 1 vertices and nk(k − 1)/2 edges,[2] girth 3 (if k > 2), radius 1 and diameter 2.
It has vertex connectivity 1 because its central vertex is an articulation point; however, like the complete graphs from which it is formed, it is (k – 1)-edge-connected. It is trivially perfect and a block graph.
Special cases
By construction, the windmill graph Wd(3,n) is the friendship graphFn, the windmill graph Wd(2,n) is the star graphSn and the windmill graph Wd(3,2) is the butterfly graph.
Labeling and colouring
The windmill graph has chromatic numberk and chromatic index n(k – 1). Its chromatic polynomial can be deduced from the chromatic polynomial of the complete graph and is equal to
The windmill graph Wd(k,n) is proved not graceful if k > 5.[3] In 1979, Bermond has conjectured that Wd(4,n) is graceful for all n ≥ 4.[4] Through an equivalence with perfect difference families, this has been proved for n ≤ 1000.
[5]
Bermond, Kotzig, and Turgeon proved that Wd(k,n) is not graceful when k = 4 and n = 2 or n = 3, and when k = 5 and n = 2.[6] The windmill Wd(3,n) is graceful if and only if n ≡ 0 (mod 4) or n ≡ 1 (mod 4).[7]