Delay differential equations differ from ordinary differential equations
in that the derivative at any time depends on the solution (and in the case of neutral equations on the derivative) at prior times. The simplest constant delay equations have the form
where the time delays (lags)
Contents |
Systems of delay differential equations now occupy a place of central importance in all areas of science and particularly in the biological sciences (e.g., population dynamics and epidemiology). Baker, Paul, & Willé (1995) contains references for several application areas.
Interest in such systems often arises when traditional pointwise modeling assumptions are replaced by more realistic distributed assumptions, for example, when the birth rate of predators is affected by prior levels of predators or prey rather than by only the current levels in a predator-prey model. The manner in which the properties of systems of delay differential equations differ from those of systems of ordinary differential equations has been and remains an active area of research; see Martin & Ruan (2001) and Raghothama & Narayanan (2002) for typical examples of such studies. See also Shampine, Gladwell, and Thompson (2003) for a description of several common models.
Additional information is required to specify a system of delay differential equations.
Because the derivative in (1) depends on the solution at the
previous time
In most models, the delay differential equation and the initial history are incompatible:
for some derivative order, usually the first, the left and right derivatives
are not equal.
For example, the simple model
One of the most fascinating properties of delay differential equations is the manner in which such
derivative discontinuities are propagated in time.
For the equation and history just described, for example, the initial first
discontinuity is propagated as a second degree discontinuity at time
Neves & Feldstein (1976) characterized the tree of derivative
discontinuity times for state dependent delay differential equations as the zeroes with odd
multiplicity of equations
where
Several of the solvers discussed in the next section use explicit Runge-Kutta methods to integrate systems of delay differential equations. An important question in this case is that of interpolation. Unlike ordinary differential equation solvers that are based on linear multistep methods possessing natural extensions, early Runge-Kutta solvers did not incorporate interpolation; rather they stepped exactly to the next output point instead of stepping beyond it and obtaining interpolated solutions. Interest in the issues of obtaining dense output without limiting the step size in this fashion and by the desire to incorporate root finding led to the development of Runge-Kutta methods endowed with suitable interpolants. Interpolation is handled in one of two ways in modern Runge-Kutta solvers, Hermite interpolation and continuously imbedded methods. For example, the solver dde23 which is based on a third order Runge-Kutta method uses Hermite interpolation of the old and new solution and derivative to obtain an accurate interpolant. By way of contrast, the solver dde_solver uses a sixth order Runge-Kutta method based on a continuously embedded
A number of issues must be taken into account by software for delay differential equations. Baker, Paul, & Willé (1995), Shampine & Thompson (2001), and Thompson & Shampine (2006) discuss the various issues. The well known dmrode solver (Neves (1975)) was the first effective software for delay differential equations. Many of the central ideas on which this solver was based were used in later f77 solvers dklag5 (Neves & Thompson (1992)) and dklag6 (Corwin, Sarafyan, and Thompson (1997)), and the Fortran 90/95 dde_solver (Thompson & Shampine (2006)). Although the state of the art for numerical software for delay differential equations is not as advanced as that for ordinary differential equation software, several high quality solvers have recently been developed. The effectiveness of the software is determined in large part by the manner in which propagated derivative discontinuities are handled. Some delay differential equation solvers such as those in Paul (1995), and Thompson & Shampine (2006) explicitly track and locate the zeroes of (2) and include them as integration mesh points. Different approaches are used in other software. For example, the ddverk solver (Enright & Hayashi (1997)) uses derivative defect error control to implicitly locate discontinuity times. It then uses special interpolants to step cross the discontinuities. The ddesd solver (Shampine (2005)) uses residual error control to avoid the use of embedded local error estimates near discontinuity times.
Effective delay differential equation software must deal with other difficulties peculiar to systems of delay differential equations. Early software, for example, limited the step sizes used to be no larger than the smallest delay. But small delays are encountered in many problems; and this artificial restriction on the step size can have a drastic effect on the efficiency of a solver. Most of the solvers mentioned above are based on pairs of explicit continuously embedded Runge-Kutta methods (Shampine (1994)). When the step size exceeds a delay, the underlying interpolation polynomials are iterated in a manner somewhat akin to a predictor-corrector iteration for linear multistep methods. Refer to Baker & Paul (1996), Baker, Paul, & Willé (1995), Enright & Hayashi (1998), and Shampine & Thompson (2001) for details of various aspects of this issue.
The solvers dde23, ddesd, and dde_solver contain a very
useful provision for finding zeroes of event functions (Shampine (1994))
that depend on the solution.
In addition to solving a system of delay differential equations, they simultaneously locate
zeroes of state dependent functions
Although much recent delay differential equation software utilizes explicit continuously embedded Runge-Kutta methods, software based on other methods has been developed. For example, Jackiewicz & Lo (2006) and Willé & Baker (1992) utilize generalized Adams linear multistep methods; and the radar5 solver (http://www.unige.ch/~hairer/software.html) is based on collocation methods. Another well known and widely used program with the ability to solve delay differential equations is the xppaut program (Ermentrout (2002)). The use of software based on a class of general linear methods (diagonally implicit multistage integration methods) is discussed in Hoppensteadt & Jackiewicz (2006) in conjunction with the problem considered in the next section. Bellen & Zennaro (2003) discuss the commonly used methods for delay differential equations in considerable detail.
Hoppensteadt & Jackiewicz (2006) investigated a model which
generalizes previously studied models for infectious diseases.
Solving this model requires the determination of a threshold time at
which the accumulated dosage of infection reaches a prescribed level.
Once this time is determined, the relevant equations may be integrated to
obtain the desired solution.
The minimum threshold time
For Example 1 of the reference, the relevant variables and functions
are given by
Following is a brief description of the manner in which this problem can
be solved.
As the description suggests, considerable dexterity may be required to
solve a realistic system of delay differential equations.
The solution of this problem involves three solution phases.
Three delay differential equations are solved in each phase, one for
Internal references