Silent synapse refers to a synaptic contact between two neurons where a presynaptic action potential fails to evoke a detectable postsynaptic signal. A synapse can be presynaptically silent if the action potential invading the presynaptic bouton or terminal fails to evoke release of neurotransmitter. However, the term is more commonly used to describe a postsynaptically silent excitatory synapse, where glutamate release fails to elicit a detectable AMPA receptor-mediated response. At such synapses an NMDA receptor-mediated signal may nevertheless be detected if the postsynaptic membrane is depolarized sufficiently to relieve the Mg2+-mediated blockade of these receptors.
Contents |
At a presynaptically silent synapse the neurotransmitter release probability is so low that no response can be elicited via postsynaptic receptors. This situation probably occurs during development at many synapses, and was described at the neuromuscular junction long before NMDA-only synaptic transmission in the mammalian brain. Among evidence for presynaptically silent synapses is the finding that some terminals in the crayfish neuromuscular junction are devoid of presynaptic dense bodies (Jahromi and Atwood, 1974; Atwood and Wojtowicz, 1999). High-resolution optical methods have been used to resolve among multiple release sites within individual Drosophila neuromuscular junctions, where short-term facilitation is expressed in part by recruitment of previously silent sites (Peled and Isacoff, 2011). In the mammalian brain, some evidence exists that activity-dependent 'unsilencing' of glutamatergic synapses is mediated by changes in vesicle kinetics (Gasparini et al., 2000). Interestingly, a role for nicotinic receptors in unsilencing has been reported at both glutamatergic and cholinergic synapses (Maggi et al., 2003; Krishnaswamy and Cooper, 2009). Functionally mute synapses have also been reported at GABAergic synapses that appear to be tonically depressed by presynaptic CB1 receptors (Losonczy et al., 2004).
The first evidence that glutamatergic synapses in the hippocampus could signal exclusively via NMDA receptors came from analyzing the trial-to-trial amplitude fluctuations of excitatory postsynaptic currents (EPSCs) recorded in CA1 pyramidal neurons in acute rodent brain slices (Kullmann, 1994). The two components of excitatory transmission evoked by stimulating presynaptic axons (Schaffer collaterals of CA3 pyramidal neurons) were isolated by sequentially clamping the postsynaptic membrane potential at a negative value (around -70 mV) to ensure that NMDA receptors were blocked by Mg2+ ions, and then at a positive value (around +40 mV) in the presence of AMPA receptor blockers to reveal NMDA receptor-mediated signaling. If both AMPA and NMDA receptors were present at all synapses, the variability of each component of the postsynaptic signal, expressed as the coefficient of variation (CV), should be approximately equal. This is because CV (the ratio of standard deviation to mean amplitude) is mainly determined by trial-to-trial variability in the number of vesicles of glutamate released from the presynaptic terminal. Instead, CV was found to be consistently higher for the AMPA receptor-mediated component of EPSCs than for the NMDA receptor-mediated component.
Probabilistic transmission at most synapses can be described as a binomial process, where the average number of quanta of transmitter released (quantal content) is given by the product of \(n\ ,\) the number of release sites, and \(p\ ,\) the average probability at each site. The variance of such a process is equal to \(np(1-p)Q^2\ ,\) where \(Q\) is the quantal amplitude, while the mean is \(npQ\ .\) CV is thus \(\sqrt{(1-p)/np}\ .\) The larger CV of AMPA than NMDA receptor-mediated EPSCs can therefore be explained if \(n\) is effectively lower for AMPA than NMDA receptors. That is, postsynaptic AMPA receptors do not sense the release of glutamate from as many presynaptic sites as do NMDA receptors. Thus, a fraction of synapses appear to be ‘silent’ with respect to AMPA receptors.
Subsequent studies provided more direct evidence for a discrepancy between AMPA and NMDA receptor-mediated signaling. By recording the response to glutamate released from only a few synapses activated by very weak electrical stimuli, the frequency of failures of transmission was compared at two different postsynaptic membrane potentials (Isaac et al., 1995; Liao et al., 1995). When the membrane was clamped at a negative potential a higher rate of failures was observed than when recording at a positive potential, again consistent with NMDA receptors sensing glutamate release at a larger number of synapses than AMPA receptors. Minimal stimulation has revealed silent synapses in numerous areas, including the developing thalamocortical projection (Isaac et al., 1997), rodent spinal cord (Bardoni et al., 1998; Li and Zhuo, 1998), frog optic tectum (Wu et al., 1996), and zebra finch cortex (Bottjer, 2005).
It is difficult to be certain that minimal stimulation reliably activates the same axons during the course of an experiment. A definitive demonstration that silent synapses are not an artifact of stimulus drift came from paired recordings where the response to action potentials in a single presynaptic neuron was monitored (Montgomery et al., 2001). In this situation again, some functional connections were shown to be mediated exclusively by NMDA receptors: action potentials in the presynaptic neuron evoked a postsynaptic signal that could only be detected when the postsynaptic neuron was depolarized.
Several mechanisms have been proposed to account for silent synapses.
The first proposed explanation for the discrepancy in AMPA and NMDA receptor-mediated signaling was that AMPA receptors were absent or non-functional at a subset of synapses. Such synapses can be considered ‘deaf’ with respect to glutamate release, but nevertheless functional when the Mg2+ block of NMDA receptors is relieved (Kullmann, 1994). This remains the dominant model for silent synapses to date. It is consistent with immuno-EM data showing that the density of AMPA receptors varies far more among synapses than that the density of NMDA receptors (Nusser et al., 1998).
Although there is strong evidence for dynamic AMPA receptor trafficking during development and activity-dependent plasticity, this only lends indirect support to the deaf synapse model. Some observations on the co-localization of AMPA receptors, and/or effects of competitive or non-competitive blockers of glutamate receptors imply that this model may not account for all silent synapses (Balland et al., 2008; Choi et al., 2000; Kullmann et al., 1996). Two alternative explanations for silent synapses rely on the fact that NMDA receptors have a much higher affinity for glutamate than AMPA receptors: when tested with different concentrations of glutamate at steady-state, NMDA receptors are approximately 100-fold more sensitive than AMPA receptors (Patneau and Mayer, 1990).
An EPSC exclusively mediated by NMDA receptors could, in principle, result from a synaptic glutamate concentration transient that was insufficient to activate AMPA receptors. A possible drawback of this model is that the difference in sensitivity of NMDA and AMPA receptors at steady state does not necessarily predict how they respond to a brief transient of glutamate as would be expected to occur in the synaptic cleft (Kullmann, 1999). Indeed, the binding rates for the two receptors are quite similar, and the different sensitivities to steady state glutamate concentrations are more a reflection of the desensitization and unbinding rates. Nevertheless, if glutamate were released relatively slowly, for instance via a narrow pore linking the vesicle to the synaptic cleft, the glutamate concentration transient could still be sufficient to activate NMDA but not AMPA receptors (Choi et al. 2000; Renger et al., 2001).
A further alternative explanation for silent synapses is that glutamate diffuses from neighboring synapses, and therefore reaches NMDA receptors as a relatively slow wave of neurotransmitter, insufficient to activate AMPA receptors (Asztely et al., 1997; Kullmann et al., 1996). Ultrastructural studies show that, although the average nearest-neighbor distance between synapses in CA1 pyramidal cells of the rat hippocampus is approximately 0.5 micrometer (Rusakov and Kullmann, 1998), there is considerable variability and some synapses can be even closer together, and often without astrocytic processes separating them. Most of these neighboring synapses are likely to be on spines belonging to different cells. Thus, a proportion of NMDA receptors may well ‘eavesdrop’ on other synapses. NMDA receptors mediating crosstalk may not even be exclusively synaptic, because these receptors also occur in the extrasynaptic membrane, albeit at a lower concentration. Indeed, some evidence exists that some NMDA receptors, especially those incorporating GluN2 subunits, are shared among synapses activated by non-overlapping populations of axons (Scimemi et al., 2004). In the cerebellar cortex glutamate spillover has been shown to be sensed not only by NMDA receptors but even, under certain conditions, by AMPA receptors (Carter and Regehr, 2000).
Much of the attention given to the silent synapse phenomenon stems from its consequences for understanding the early changes that occur during NMDA receptor-dependent long-term potentiation (LTP). LTP is expressed through an increase in the average quantal content detected by AMPA receptors, with a far smaller change in NMDA receptor-mediated signaling (Kullmann, 1994). According to the deaf synapse model, this is most simply explained by insertion of clusters of AMPA receptors at synapses that, under baseline conditions, were only equipped with NMDA receptors (Kullmann, 1994; Isaac et al., 1995; Liao et al., 1995). Such insertion could either occur via postsynaptic fusion of a vesicle containing AMPA receptors, or via lateral translocation of a cluster from a reserve of extrasynaptic AMPA receptors. However, alternative explanations for silent synapses prompt different explanations for the increase in AMPA receptor-mediated quantal content with LTP. If glutamate is released slowly via a fusion pore, then LTP may be associated with a change in the mode of release, by conversion to rapid exocytosis, which could activate both NMDA and AMPA receptors (Choi et al., 2000; Renger et al., 2001). If silent synapses represent inter-synaptic spillover, LTP might occur as a presynaptic increase in release probability at an ‘eavesdropping’ synapse (Kullmann et al., 1996). Both these explanations require a retrograde signal leading from postsynaptic NMDA receptor-dependent cascade (most likely consequent to Ca2+ influx). A final possibility is that a postsynaptic structural change occurs, such that the diffusional distance from presynaptic release site to the postsynaptic AMPA and NMDA receptors decreases.
NMDA-only silent synapses appear to be more abundant early in development (Durand et al., 1996; Wu et al., 1996; Baba et al., 2000). This has been interpreted as reflecting maturation of synapses with sequential expression of NMDA, followed by AMPA, receptors, possibly through an LTP-like process. However, in the early post-natal rodent hippocampus, repetitive synaptic stimulation has been shown to cause a disappearance of AMPA receptor-mediated signals without a corresponding loss of NMDA receptor-mediated signaling, implying that active silencing occurs (Xiao et al., 2004). In contrast, in the spinal cord, repetitive stimulation while the postsynaptic neuron was held at a positive potential, led to the appearance of an AMPA receptor component, that is, unsilencing (Baba et al., 2000). The mechanisms underlying these changes, and their relationship to LTP and long-term depression, remain incompletely understood, as do their role in the normal maturation of excitatory synaptic transmission.
Internal references