From Scholarpedia - Reading time: 19 min
A symplectic map is a diffeomorphism that preserves a symplectic structure.
The simplest example of symplectic map is a map \(F:{\mathbb R}^2 \to {\mathbb R}^2\) which preserves the area and orientation, i.e. such that for all points \( z\in {\mathbb R}^2\) we have \(\det D_zF = 1\ ,\) where \(D_zF\) is the differential (or Jacobian matrix) of \(F\ .\) In terms of differential forms, this can be expressed as \(F^*(dx\wedge dy) = dx \wedge dy.\)
More generally, if \(M\) and \(N\) are manifolds of dimension \(2n\) and \(\omega_M, \omega_N\) are symplectic forms (non-degenerate, closed, differentiable 2-forms) on \(M\) and \(N\ ,\) then a diffeomorphism \(F: M\to N\) is a symplectic map if \[\tag{1} F^*\omega_N = \omega_M. \]
By a theorem of Darboux, for each point \( z\in M\) one can always find local coordinates such that identity (1) translates to:
\[(D_zF^T) J (D_zF) = J,\] where \(
J =
\begin{pmatrix}
0_n & I_n \\
-I_n & 0_n
\end{pmatrix}
\)
Symplectic maps arise naturally in physical systems. In particular, they are closely related to Hamiltonian systems. Other names for symplectic maps are canonical transformations and symplectomorphisms. Symplectic maps are central to the theories of Kolmogorov-Arnold-Moser (KAM), Aubry-Mather and symplectic topology.
Contents |
When studying periodic orbits in Celestial Mechanics, Poincaré introduced the notion of first return map on a surface, also called a Poincaré section, transverse to a periodic orbit at a point \(z^*\ .\) The orbits of points of the section close to \(z^*\) return to it, defining a map from a punctured neighborhood of \(z^*\) of the section to itself. Because mechanical systems are Hamiltonian, when the system has two degrees of freedom, the resulting map preserves area (Meiss (1992)). Under certain conditions on the orbit of \(z^*\) (e.g. that it be elliptic), this map gives rise to a simple model of area preserving maps on the closed cylinder (or annulus) \(\mathbb S^1 \times [-1, 1]\) with the boundary twist condition: points on the boundaries are rotated in opposite directions.
A year before his death in 1912, Poincaré proposed an incomplete proof of a theorem stating that area preserving maps of the annulus with the boundary twist condition have at least two fixed points (Birkhoff gave another proof the following year). This result contrasts with Lefschetz' fixed point theory: the topology of the annulus does not guarantee the existence of fixed points for homeomorphisms of the cylinder, as the example of a rotation shows. A proof of the Poincaré-Birkhoff Theorem in the simple case of a positive twist map (on the cylinder, homeomorphic to the annulus), illustrates the connection with variational calculus and Morse Theory characteristic of the more recent field of symplectic topology.
One can prove the general case of the Poincaré-Birkhoff theorem by decomposing the map into positive and negative twist maps.
This theorem gave rise to the famous conjecture of V. I. Arnold: a (Hamiltonian) symplectic map on a compact, closed symplectic manifold has as many fixed points as a smooth function has critical points. This conjecture was proved in the special case of the standard torus by C. Conley and E. Zehnder in 1983. This, together with M. Gromov's seminal paper (1985) on \(J\)-holomorphic curves, marked the beginning of the field of symplectic topology. A. Floer (1989) made the essential breakthrough in establishing the general case. After work by many other mathematicians, the full conjecture was finally proven by G. Liu and G. Tian (1998) and K. Fukaya and K. Ono (1996).
Area preserving twist maps led J. Moser to an instance of the famous Kolmogorov-Arnold-Moser (KAM) theory. Consider the map of the cylinder \(F_0(q,p) = (q+p,p)\ .\) This area-preserving map is also completely integrable\[F_0\] preserves each circle \(\{p = p_*\}\) on which it induces a rotation by angle \(p_*\) (measured in fraction of circumference). If \(p_*\) is rational, the circle is a union of periodic orbits. If \(p_*\) is irrational, each orbit is dense on the circle. KAM theory implies that, for an area-preserving map \(F_\epsilon\) close to \(F_0\ ,\) there are \(F_\epsilon\)-invariant circles of all ``sufficiently irrational" rotation number which fill a large proportion (in measure) of the cylinder.
The theory of Aubry-Mather shows that, when these invariant irrational circles break down, the map still has invariant Cantor sets, on which it acts as circle homeomorphisms of Denjoy type do on their recurrent set. Together with the Poincaré-Birkhoff Theorem, one can thus show the existence of orbits of all rotation numbers in the interval whose bounds are given by the rotation numbers of the map on the boundaries. These orbits have order properties and minimize an action defined via the generating function. However, between the invariant circles that do remain, chaotic motion occurs.
A linear symplectic form on a vector space is bilinear form \(\omega\) which is
These conditions imply that the space is of even dimension \(2n\ .\) Given a basis, to \(\omega\) one can associate a non-degenerate \( 2n \times 2n\) skew symmetric matrix \(A\) by \(\omega(v,w) = <Av,w>\ ,\) where \(<\quad, \quad >\) is the usual dot product in the basis. By a process similar to that of Gram-Schmidt, one can always find coordinates, called Darboux coordinates, \((q_1, \ldots, q_n, p_1, \ldots, p_n)\) so that \[A = J = \begin{pmatrix} 0_n & I_n \\ -I_n & 0_n \end{pmatrix} \quad \text{which means} \quad \omega = \sum_{k=1}^n dq_k\wedge dp_k\]
Note that \(dq_k\wedge dp_k (v,w)\) is the determinant of the \(2\times 2\) matrix formed by the \(k^{th}\) and \((n+k)^{th}\) components of \(v\) and \(w\ .\) Also, the \(n^{th}\) wedge power of this symplectic form is related to the standard volume form in these coordinates: \[\tag{2} \omega^n = {(-1)^{[n/2]}}{n!} [dq_1\wedge dp_1 \wedge\ldots \wedge dq_n\wedge dp_n] \]
A symplectic linear map \(L\) on \(\mathbb R^{2n}\) is a linear map that preserves the symplectic form: \[ \omega(Lv, Lw) = \omega(v, w)\] In Darboux coordinates, where \(\omega(v,w) = <Jv,w>\ ,\) then \(L\ ,\) seen as a matrix, satisfies: \[\tag{3} L^TJL = J. \]
We say that the matrix \(L\) is symplectic.
\[ ab^T = ba^T, cd^T = dc^T, ad^T-bc^T = I_n \text{ and } L^{-1} = \begin{pmatrix} d^T & -b^T\\ -c^T & a^T \end{pmatrix}\]
Symplectic matrices form a (Lie) group called the Symplectic Group \(Sp(2n)\ ,\) whose Lie Algebra is the set of Hamiltonian matrices, matrices of the form \( JS\) where \(S\) is symmetric. Thus every near-identity symplectic matrix can be obtained as the exponential of a Hamiltonian matrix and corresponds to the time \(t\)-map of a linear Hamiltonian flow. There are symplectic matrices, however, that are not the exponentials of Hamiltonian matrices, for example, \(\begin{pmatrix} -1&1\\ 0& -1\end{pmatrix}\ .\)
The intersection of \(Sp(2n)\) with the orthogonal group \(O(2n)\) is a group isomorphic to the complex unitary group \(U(n)\ :\) \[ U(n) =Sp(2n)\cap O(2n)= Sp(2n) \cap GL(n,\mathbf{C}) =O(2n)\cap GL(n,\mathbf{C}). \] If \(L\) is a symplectic matrix, it can be decomposed into \(L = PO\) where \(P = (LL^T)^{1/2}\) is symmetric, positive definite and symplectic, and \(O= LP^{-1}\) is orthogonal and symplectic, and hence unitary. The path \(\alpha\to P^\alpha O\) provides a deformation-retraction of \(Sp(2n)\) onto \(U(n)\ .\) Thus \(Sp(2n)\) inherits the topology of \(U(n)\ ,\) and in particular \(\pi_1(Sp(2n)) = \mathbb Z\ .\) The winding number of a loop of symplectic matrices in \(Sp(2n)\) is called the Maslov index.
A symplectic structure on a manifold \(M\) is given by a closed, non-degenerate, differentiable two-form \(\omega\ .\) This means \(d\omega =0\) and for all tangent vectors \(v\) to \(M\ ,\) there is another vector \(w\) tangent to \(M\) at the same point such that \(\omega(v,w) \neq 0.\)
The remarkable theorem of Darboux states that, around any point of a symplectic manifold, one can always find Darboux local coordinates \((q_1, \ldots, q_n, p_1, \ldots, p_n)\ ,\) where, as in the linear case, \(\omega = \sum_{k=1}^n dq_k\wedge dp_k\ .\) Thus, in stark contrast to the curvature in Riemannian geometry, there are thus no local invariants in symplectic geometry.
The cotangent bundle \(T^*M\) of a differentiable manifold \(M\) is the vector bundle with base \(M\) which is dual to the tangent bundle \(TM\ :\) each fiber \(T^*_qM\) is the vector space of one-forms acting on the corresponding tangent space \(T_qM\ .\) In physics, \(M\) often constitutes the spatial coordinates of a system and \(T_q^*M\) corresponds to the possible momenta at position \(q\ .\) The cotangent bundle is a manifold in its own right, with coordinates \((q_1, \ldots, q_n, p_1, \ldots, p_n)\ ,\) where one chooses the coordinate function \(p_k\) so that \(p_k(\sum a_j dq_j) = a_k\) on any one-form \(\sum a_j dq_j\) (the q and p are then called conjugate coordinates). The one-form \(\alpha = pdq= \sum p_k dq_k\) on \(T^*M\ ,\) often called the Liouville form, is canonical: it has a coordinate free definition and thus does not depend on the choice of conjugate coordinates. The canonical symplectic form is then \(\omega = -d\alpha\ ,\) and conjugate coordinates are Darboux coordinates for \(\omega\ .\)
If \((M, \omega_M)\ ,\) \((N, \omega_N)\) are two symplectic manifolds of dimension \(n\ ,\) a diffeomorphism \(F: M \rightarrow N\) is symplectic if \[ F^*\omega_N = \omega_M \] where the pull-back form \(F^*\omega_N\) is defined on \(TM\) by \(F^*\omega_N(v,w) = \omega_N(DF(v), DF(w))\ .\) If the manifolds \(M\) and \(N\) are exact symplectic, i.e. if there are 1-forms \(\alpha_M, \alpha_N\) with \(d\alpha_M = \omega_M,\ d\alpha_N = \omega_N\ ,\) then \(F\) is exact symplectic if \[ F^*\alpha_N - \alpha_M = dS \] for some real valued function \(S\) on \(M\ .\) The identities \(d(F^*\alpha_N)= F^* (d\alpha_N)\) and \(d(dS) =0\) imply that an exact symplectic map is symplectic.
\[ (D_zF^T) J (D_zF) = J, \] with \( J = \begin{pmatrix} 0_n & I_n \\ -I_n & 0_n \end{pmatrix} \ .\) Thus, seen as a matrix, \( D_zF\) satisfies the properties of symplectic matrices enumerated above.
\[ \frac d{dt} \psi_t = X_t\circ\psi_t. \] Reminding the reader that \(i_{X_t}\omega(.) \equiv \omega(X_t, .)\ ,\) the homotopy formula of exterior calculus: \[\tag{4} \frac d{dt} \psi_t^* \omega = \psi_t^*(i_{X_t}d\omega +d(i_{X_t}\omega)) \]
implies that \(d(i_{X_t}\omega)=0\ ,\) since \(\psi_t^*\omega = \omega\) is constant and \(d\omega=0\ .\) Thus the form \(i_{X_t}\omega\) is closed. When it is exact, i.e. \[ i_{X_t}\omega = dH_t, \] for some (time dependent) function \(H_t: M\rightarrow R\ ,\) \(F\) is called a Hamiltonian diffeomorphism with Hamiltonian function \(H_t\ ,\) and \(X_t\ ,\) often denoted \(X_{H_t}\ ,\) is the Hamiltonian vector field. Going in the opposite direction with this reasoning, and assuming \(X_t\) is a Hamiltonian vector field, \(d(i_{X_t}\omega) = d^2H_t=0\) and using the homotopy formula (4), one obtains that a Hamiltonian diffeomorphism is automatically symplectic. The set \(Ham(M,\omega)\) of Hamiltonian diffeomorphisms also forms a group, hence a subgroup of \(Symp_0(M,\omega)\ .\)
and without boundary however, one can prove that \(F\in Symp_0(M,\omega)\) is Hamiltonian if and only if there exists a symplectic isotopy \(\psi_t\in Symp_0(M,\omega)\) such that \(\psi_0 = Id, \psi_1 = F\) and \({\rm Flux}(\psi_t)\equiv\int_0^1 [i_{X_t}\omega ] dt =0\) where \([i_{X_t}\omega ]\) denotes the cohomology class of \(i_{X_t}\omega\ .\) The flux of the isotopy is a group homomorphism between the covering space of \(Symp_0(M, \omega)\) and the cohomology group \(H^1(M;R)\ .\) Since \(H^1(M;R)\) is abelian, the commutator subgroup of \(Symp_0(M,\omega)\) is contained in \(Ham(M, \omega)\ .\) From a theorem by Banyaga (see McDuff & Salamon (1998)), these two groups are in fact equal: \[[Symp_0(M,\omega), Symp_0(M,\omega)]=Ham(M, \omega).\]
Symplectic topology studies global phenomena that distinguish symplectic maps and their group from other groups of diffeomorphisms. For more on this subject, see McDuff & Salamon (1998)
Symplectic twist maps are a natural generalization of area preserving positive (or negative) twist maps of the cylinder. Indeed, the cylinder can be seen as the cotangent bundle of the circle.
A diffeomorphism \(F: U\rightarrow U\) is called a symplectic twist map if:
Letting \(q,p\) denote the base and fiber local variables respectively, and \( F(q,p) = (Q, P)\ ,\) the twist condition implies that \(p \rightarrow Q(q_0, p)\) is a local diffeomorphism and thus \(\frac{\partial Q}{\partial p}\) is a non-degenerate matrix. In certain cases, a non-uniform non-degeneracy is sufficient to obtain a (global) twist condition. When the universal cover of \(M\ ,\) \(\tilde M = {\mathbb R}^{n}\ ,\) as in the important case of \(M = {\mathbb T}^n\ ,\) one can make this definition more global and ask that \(U= T^*{\tilde M}\) and that \(\pi\circ \tilde F: T^*_{q_0}{\tilde M} \rightarrow {\tilde M}\) be a diffeomorphism for every \(q_0\ .\)
\[\tag{5} F(q,p) = (Q, P)\Longleftrightarrow p = -\partial_1S(q, Q), \quad P = \partial_2S(q,Q) \]
is a homeomorphism between symplectic twist maps and the set of functions \(S\) (defined on the appropriate subset of \(M\times M\)) satisfying \(\partial_{1}\partial_{2}S\) is uniformly non degenerate. Equation (5) implies that, for a symplectic twist map \(F\) with generating function \(S\ ,\) the following variational principle holds:
\[ (q_0,p_0), \ldots, (q_N, p_N) \] is an orbit segment of \( F \Longleftrightarrow (q_0, \ldots , q_N) \) is a critical point for \( W(q_0, \ldots , q_N) = \sum_{k=0}^{N-1} S(q_k, q_{k+1}) \) with the correspondence given by \(p_k = -\partial_1S(q_k, q_{k+1})=\partial_2S(q_{k-1}, q_{k}).\) This correspondence is a discrete analog of the Hamiltonian-Lagrangian correspondence in continuous time systems, the twist condition may be seen as a weak form of the Legendre condition and \(W\) as an action functional on discrete paths.
Let \(V(q)\) be a \(\mathbb Z^n\)-periodic function. Then the map \(F: \mathbb R^{2n}\rightarrow {\mathbb R}^{2n}\) given \[ F(q , p) = (q+p+\nabla V(q), p +\nabla V(q)) \] has generating function \(S(q,Q) = \frac 12 \| Q -q \|^2 + V(q)\ .\) By periodicity, \(F\) is the lift of a symplectic twist map on \(T^*\mathbb T^n \cong {\mathbb T}^n\times\mathbb R^n\ .\) When \(V\equiv 0\) then the map is completely integrable: it acts on each torus \(p = p_0\) as a translation with ``rotation vector" \(p_0\ .\) When \(n =1\) and \(V(q) = K\cos(q)\) one obtain the (Chirikov) Standard Map. An enormous amount has been written about this map as it contains a microcosm of much of Hamiltonian dynamics. The function \(W\) for its variational counterpart also appears in the Frenkel-Kontorova model, whose study by Aubry augured the Aubry-Mather theory.
Consider the dynamics of a ball on a convex billiard table with smooth boundary \(C(q)\ .\) Let \(\theta\) be the angle of rebound and \(p = -\cos(\theta)\ .\) Then the map \(F(q,p) = (Q, P)\) associating a point of rebound and angle to the next is a twist map on \(S^1\times (-1,1)\) with generating function \(S(q, Q) = \| C(Q) - C(q) \|\ .\) Hence \(W\) is the length of the trajectory in this case.
At an elliptic fixed point, the differential has all its eigenvalues on the unit circle. In this case, a normal form theorem implies that an appropriate, symplectic change of coordinates yield, in a neighborhood of the fixed point, a symplectic twist map of a subset \(U\) of \( T^*T^n\) that is close to being completely integrable (Golé (2001)).
Let \(h^t\) be a Hamiltonian flow, associated with the Hamiltonian function \(H\) on the cotangent bundle \(T^*M\ .\) Using the homotopy formula (4) one can show that: \[ (h^t)^*pdq - pdq = dS_t \quad \text{where } S_t(q,p) = \int_\tau pdq - Hdt \] where \(\tau(t) = (h^t(q,p),t)\ ;\) proving that \(h^t\) is exact symplectic. To see when this diffeomorphism satisfies the twist condition, consider the following heuristic argument. For small \(\epsilon\ ,\) we can approximate \(h^\epsilon(q,p) = (q(\epsilon), p(\epsilon))\) by: \[ q(\epsilon) = q + \epsilon H_p + O(\epsilon^2) \] \[ p(\epsilon) = p - \epsilon H_q + O(\epsilon^2) \] The local twist condition \(\det \left(\frac{\partial q(\epsilon)}{\partial p}\right) \neq 0\) is thus equivalent to \(\det H_{pp} \neq 0\) (the Legendre condition). One can make this condition global in different situations; for example, on a compact invariant set or when the non-degeneracy condition on \(H_{pp} \) is suitably uniform. (Golé, 2001). Optimizing \(W(q_0, \ldots , q_N)\) in this case is equivalent to optimizing the Hamiltonian action\(\int pdq - Hdt\) over a set of curves that are piecewise trajectories of \(h^t\) with "corners" at each \(q_k\ .\)
Given a symplectic map \( F \) on \(T^*M\) that is a composition of symplectic twist maps \( F = F_1\circ\ldots\circ F_K\) (e.g. a Hamiltonian diffeomorphism), one can find periodic orbits as critical points of the corresponding function \[ W(q_0, \ldots , q_{K}) = \sum_{k=0}^{K-1} S_k(q_k, q_{k+1}) \] with suitable periodic boundary conditions, where \(S_k\) is the generating function of \(F_k\ .\) The space of admissible sequences inherits the topology of \(M\ ,\) and hence one finds as many periodic orbit as a function has critical points on \(M\ .\) This requires the appropriate boundary conditions on the dynamics, e.g. that it be that of a geodesic flow outside a bounded set. The boundary condition for a single symplectic twist map can also be given, as proposed by Arnol'd, as a condition of linking of spheres and their images at the boundary of a ball bundle. In the case \(M = T^n\ ,\) one can repeat this procedure to find periodic orbits of all rational rotation vectors \(m/k\) for which \(F^k(q,p)= (q+m,p)\ .\)
Similarly to Floer's proof of the Arnold conjecture, the gradient flow of \(W\) on the space of admissible sequences \((q_0, \ldots, q_K)\) has invariant sets whose (co)homology is at least as complicated as \(H^*(M)\ .\) In the case of \(M =T^n\) these sets are called ghost tori (Golé (2001).
Types of Periodic Orbits. Because of the restrictions on the spectrum of symplectic matrices, periodic orbits of symplectic maps can only be of certain types. In particular they can't have attractive or repulsive periodic orbits. The spectrum of the differential along an orbit is related to the spectrum of the second derivative \(Hess(W)\) of \(W\ :\) in the 2 dimensional case, if an orbit minimizes \(W\) then it is hyperbolic (MacKay & Meiss (1983)). In higher dimensions, the relationship is more complicated: there are open sets of symplectic maps close to integrable that have no hyperbolic fixed points, yet have minimizers (Arnaud (1994)). But given some extra conditions on the generating function, one can relate the hyperbolicity of invariant sets with some uniform non-degeneracy of \(Hess(W)\) (Aubry et. al. (1991)).
The completely integrable map \(F_0:(q, p)\mapsto (q + p , p)\) foliates its phase space \(T^*\mathbb T^n\) with invariant tori \(\{ p = p^*\}\ .\) On each torus, \(F_0\) acts as a translation by rotation vector \(p^*\ .\) Each torus is a graph over the base which is Lagrangian (\(\omega \equiv 0\) restricted to each torus). KAM theory states that, for any map \(F\) that is \(C^\infty\) (or even \(C^{2n+1}\)) close to \(F_0\ ,\) the tori with "very" irrational rotation vectors survive as \(F\)-invariant Lagrangian graphs, with dynamics \(C^\infty\)-conjugated to the original one. Very irrational means that \(p^*\) satisfies a Diophantine condition. This condition is shared by a set of large measure made of invariant tori, which tends to full measure as the perturbation goes to 0.
Internal references
Aubry-Mather theory, Chaos, Dynamical Systems, Hamiltonian Systems, Hamiltonian Normal Forms, Periodic orbit, Standard map, Three body problem