Carbon monoxide poisoning occurs after the inhalation of carbon monoxide gas. Carbon monoxide (CO) is a product of combustion of organic matter under conditions of restricted oxygen supply, which prevents complete oxidation to carbon dioxide (CO2). Carbon monoxide is colorless, odorless, tasteless, and non-irritating, making it difficult to detect. Carbon monoxide is a significantly toxic gas with poisoning being the most common type of fatal poisoning in many countries.[1] Symptoms of mild poisoning include headaches and flu-like effects; larger exposures can lead to significant toxicity of the central nervous system and heart. Following poisoning, long-term sequelae often occur. Carbon monoxide can also have severe effects on the fetus of a pregnant woman. The mechanisms by which carbon monoxide produces toxic effects are not yet fully understood, but hemoglobin, myoglobin, and mitochondrialcytochrome oxidase are thought to be compromised. Treatment largely consists of administering 100% oxygen or hyperbaric oxygen therapy, although the optimum treatment remains controversial.[2] Domestic carbon monoxide poisoning can be prevented by the use of household carbon monoxide detectors.
In a few cases, it was associated with 'haunted houses' where the residents experienced strange sounds and visions, feelings of dread, sudden onset illness, and death of all the members in the house.
In 1921, Dr. William Wilmer, an ophthalmologist published a case in American journal of ophthalmology in which he described the experiences of a family with similar symptoms as mentioned above.[3]
In 2005, a report was published describing a young female of age 23, found delirious and hyperventilating, as a result of leakage and accumulation of gas from the heater. She believed to have seen a 'ghost' in the shower. [4]
Main sources of CO that are responsible for environmental pollution are house hold fires, heaters, furnaces, motor vehicle exhaust, propane fueled equipment (such as ice resurfacers, forklifts), engine-driven generators, and wood burning stove.[5][6]
CO poisoning can also occur in scuba diving due to malfunctioning of diving air compressors.
Another source is exposure to the organic solvent methylene chloride, which is metabolized to CO by the body.[7]
Polluted air often contains unhealthy levels of carbon monoxide. Many areas of the US have struggled to achieve legislated limits. Significant advances have been made since the implementation by 1990 of a vehicle emissions limit of 3.4 gpm (grams per mile), a large reduction from the previous limit of 87 gpm.[8]
Because hemoglobin is a tetramer with four oxygen binding sites, binding of CO at one of these sites also increases the oxygen affinity of the remaining 3 sites, which interferes with normal release of oxygen. This causes hemoglobin to retain oxygen that would otherwise be delivered to the tissue.[14]
Amount of oxygen available for tissue use are decreased. This situation is described as CO shifting the oxygen dissociation curve to the left. Blood oxygen content is actually increased in the case of carbon monoxide poisoning; because all the oxygen is in the blood, none is being given to the tissues, and this causes tissue hypoxic injury.
CO has 60 times greater affinity to myoglobin as compared to oxygen. It can bind readily to myoglobin, which is another heme-containing protein, abundantly present in the muscles of body.
CO bound to myolobin is later released in the body, which subsequently binds with the hemoglobin. This phenomenon is responsible for delayed return of symptoms in CO poisoning. [15]
CO and Mitochondrial Cytochrome Oxidase C[edit | edit source]
Once CO is bound to cytochrome c oxidase, the rate of dissociation is very slow. Hence, causing prolonged damage to oxidaive metabolism in the cell.[16]
Carbon monoxide poisoning is the most common type of fatal poisoning in France and the United States. It has been estimated that more than 40,000 people per year seek medical attention for carbon monoxide poisoning in the United States.[17]
In many industrialized countries, carbon monoxide may be the cause of greater than 50% of fatal poisonings.
In the U.S., about 200 people die each year from carbon monoxide poisoning associated with home fuel-burning heating equipment. The CDC reports, "Each year, more than 500 Americans die from unintentional CO poisoning, and more than 2,000 commit suicide by intentionally poisoning themselves."[18]
Carbon monoxide has emerged as a common mean of suicide by poisoning, since the placement of strict legal restrictions on poisons like cyanide and arsenic.
Suicide was also often committed by inhaling exhaust fumes of running car engines. In the past, motor car exhaust may have contained up to 25% carbon monoxide. However, newer cars have catalytic converters, which can eliminate over 99% of carbon monoxide produced.[19] However, even cars with catalytic converters can produce substantial carbon monoxide if an idling car is left in an enclosed space. This is due to reduced oxygen availability, and therefore, less efficient combustion.
As carbon monoxide poisoning via car exhaust has become less of a suicide option, there has been an increase in new methods of carbon monoxide poisoning such as burning charcoal or other fossil fuels within a confined space, such as a small room, tent, or car.[20]
Carbon monoxide is a significantly toxic gas, although patients may demonstrate varied clinical manifestations with different outcomes, even under similar exposure conditions.[21]
The degrees of poisoning have been described as mild, moderate, and severe based on carboxyhaemoglobin percentage levels and clinical symptoms.:[22]
Mild carbon monoxide poisoning:Carboxyhaemoglobin level of over 10% without clinical signs or symptoms of carbon monoxide poisoning.
Moderate carbon monoxide poisoning:Carboxyhaemoglobin level of over 10%, but under 20-25%, with minor clinical signs and symptoms of poisoning, such as headache, lethargy, or fatigue.
Normal carboxyhemoglobin levels in an average person are less than 5%, whereas cigarette smokers (two packs/day) may have levels up to 9%.[23]
Serious toxicity is often associated with carboxyhemoglobin levels above 25%, and the risk of fatality is high with levels over 70%. Still, no consistent dose response relationship has been found between carboxyhemoglobin levels and clinical effects.[24]
Hence, carboxyhemoglobin levels are better guide for exposure levels than effects as they do not reliably predict clinical course or short- or long-term outcome.[25]
The effects of carbon monoxide in parts per million are listed below:[26]
35 ppm (0.0035%): Headache and dizziness within six to eight hours of constant exposure.
100 ppm (0.01%): Slight headache in two to three hours.
200 ppm (0.02%): Slight headache within two to three hours.
400 ppm (0.04%): Frontal headache within one to two hours.
1,600 ppm (0.16%): Headache, dizziness, and nausea within 20 minutes. Death in less than two hours.
3,200 ppm (0.32%): Headache, dizziness and nausea in five to ten minutes. Death within 30 minutes.
6,400 ppm (0.64%): Headache and dizziness in one to two minutes. Death in less than 20 minutes.
12,800 ppm (1.28%): Unconsciousness after 2-3 breaths. Death in less than three minutes.
In addition, a recent report concludes that carbon monoxide exposure can lead to a decrease in lifespan significantly as a result of damaged myocardium.[27]
Carbon monoxide poisoning is particularly difficult to diagnose since it is not easily detected by human senses. Since CO poisoning is a diagnosis frequently overlooked, it is overly emphasized to measure carboxyhemoglobin in suspicious cases. The clinical manifestations include :
CO poisoning may cause delayed clinical manifestations in the form of severe neurological manifestations.These symptoms occur days or even weeks after an acute poisoning epispde. Common clinical manifestations include:[30][31]
Long term, repeat exposures present a greater risk to individuals with coronary heart disease and in pregnant patients.[32] Chronic exposure may increase the incidence of cardiovascular symptoms in some workers, such as motor vehicle examiners, firefighters, and welders. Patients often complain of:[33]
The primary medical treatment for carbon monoxide poisoning is breathing 100% oxygen by a tight fitting oxygen mask. Oxygen hastens the dissociation of carbon monoxide from hemoglobin, improving tissue oxygenation by reducing its biological half-life.
There has been a lot of controversy in literature regarding the fact that whether or not hyperbaric oxygen offers any extra benefits over normal high flow oxygen.[2][25][37][38]
The delayed development of neuropsychiatric impairment is one of the most serious complications of CO poisoning, with extensive follow up and treatment often being required.
Carbon monoxide alarms are usually installed in homes around heaters and other equipment.
If a high level of CO is detected, the device sounds an alarm, giving people in the area a chance to ventilate the area or safely leave the building. Unlike smoke detectors, they do not need to be placed near ceiling level.
The Consumer Product Safety Commission says that "carbon monoxide detectors are as important to home safety as smoke detectors are," and recommends that each home should have at least one carbon monoxide detector.
The devices, which retail for USD $20-$60 and are widely available, can either be battery-operated or AC powered (with or without a battery backup). Since CO is colorless and odorless (unlike smoke from a fire), detection in a home environment is impossible without such a warning device.
Some state and municipal governments, including those of Ontario, Canada, and New York City, require installation of CO detectors in new units. Massachusetts and Illinois began to require a detector in all residences on January 1, 2007.
The carbon monoxide can be easily detected by the filtering paper impregnated by the solution of the palladium chloride. Carbon monoxide reduces the palladium monoxide to the black metallic palladium. This reaction is very sensitive.
↑Jiann-Ruey Ong, Sheng-Wen Hou, Hsien-Tsung Shu, Huei-Tsair Chen, and Chee-Fah Chong. Diagnostic pitfall: carbon monoxide poisoning mimicking hyperventilation syndrome. The American Journal of Emergency Medicine
Volume 23, Issue 7 , November 2005, Pages 903-904
↑Johnson C, Moran J, Paine S, Anderson H, Breysse P (1975). "Abatement of toxic levels of carbon monoxide in Seattle ice-skating rinks". Am J Public Health. 65 (10): 1087–90. PMID 1163706.CS1 maint: Multiple names: authors list (link)
↑Vossberg B, Skolnick J. (1999). "The role of catalytic converters in automobile carbon monoxide poisoning: a case report". Chest. 115 (2): 580–1. PMID 10027464.
↑Chung WS, Leung CM. (2001). "Carbon monoxide poisoning as a new method of suicide in Hong Kong". Psychiatr Serv. 52 (6): 836–7. PMID 11376237.
↑Raub JA, Mathieu-Nolf M, Hampson NB, Thom SR. (2000). "Carbon monoxide poisoning-a public health perspective". Toxicology. 145 (1): 1–14. PMID 10771127.CS1 maint: Multiple names: authors list (link)
↑ 25.025.1Scheinkestel CD, Bailey M, Myles PS, Jones K, Cooper DJ, Millar IL, Tuxen DV. (1999). "Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomised controlled clinical trial". Med J Aust. 170 (5): 203–10. PMID 10092916.CS1 maint: Multiple names: authors list (link)
↑Allred EN, Bleecker ER, Chaitman BR, Dahms TE, Gottlieb SO, Hackney JD, Pagano M, Selvester RH, Walden SM, Warren J. (1989). "Short-term effects of carbon monoxide exposure on the exercise performance of subjects with coronary artery disease". N Engl J Med. 321 (21): 1426–32. PMID 2682242.CS1 maint: Multiple names: authors list (link)
↑Fawcett TA, Moon RE, Fracica PJ, Mebane GY, Theil DR, Piantadosi CA. (1992). "Warehouse workers' headache. Carbon monoxide poisoning from propane-fueled forklifts". J Occup Med. 34 (1): 12–5. PMID 1552375.CS1 maint: Multiple names: authors list (link)
↑Thom SR, Taber RL, Mendiguren II, Clark JM, Hardy KR, Fisher AB. (1995). "Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen". Ann Emerg Med. 25 (4): 474–80. PMID 7710151.CS1 maint: Multiple names: authors list (link)