Chronic elevation of blood glucose level leads to damage of blood vessels (angiopathy). The endothelial cells lining the blood vessels take in more glucose than normal, since they don't depend on insulin. They then form more surface glycoproteins than normal, and cause the basement membrane to grow thicker and weaker. In diabetes, the resulting problems are grouped under "microvascular disease" (due to damage to small blood vessels) and "macrovascular disease" (due to damage to the arteries).
The damage to small blood vessels leads to a microangiopathy, which can cause one or more of the following:
Diabetic retinopathy, growth of friable and poor-quality new blood vessels in the retina as well as macular edema (swelling of the macula), which can lead to severe vision loss or blindness. Retinal damage (from microangiopathy) makes it the most common cause of blindness among non-elderly adults in the US.
Diabetic neuropathy, abnormal and decreased sensation, usually in a 'glove and stocking' distribution starting with the feet but potentially in other nerves, later often fingers and hands. When combined with damaged blood vessels this can lead to diabetic foot (see below). Other forms of diabetic neuropathy may present as mononeuritis or autonomic neuropathy. Diabetic amyotrophy is muscle weakness due to neuropathy.
Diabetic nephropathy, damage to the kidney which can lead to chronic renal failure, eventually requiring dialysis. Diabetes mellitus is the most common cause of adult kidney failure worldwide in the developed world.
Diabetic foot, often due to a combination of neuropathy and arterial disease, may cause skin ulcer and infection and, in serious cases, necrosis and gangrene. It is why diabetics are prone to leg and foot infections and why it takes longer for them to heal from leg and foot wounds. It is the most common cause of adult amputation, usually of toes and or feet, in the developed world.
Carotid artery stenosis does not occur more often in diabetes, and there appears to be a lower prevalence of abdominal aortic aneurysm. However, diabetes does cause higher morbidity, mortality and operative risks with these conditions.[1]
While population based studies have shown a higher risk of cardiovascular disorders in men , women with diabetes are faced with a higher risk of dyslipidemia and cardiovascular disorders than men with diabetes. This seems to be irrespective of menopause status. This could be partially explained by a higher fat tissue and a hyperactive immune system in women with diabetes.
ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death (DO NOT EDIT) [2][edit | edit source]
Recommendations for Endocrine Disorders and Diabetes[edit | edit source]
"1. The management of ventricular arrhythmias secondary to endocrine disorders should address the electrolyte (potassium, magnesium, and calcium) imbalance and the treatment of the underlying endocrinopathy. (Level of Evidence: C)"
"2. Persistent life-threatening ventricular arrhythmias that develop in patients with endocrine disorders should be treated in the same manner that such arrhythmias are treated in patients with other diseases, including use of ICD and pacemaker implantation as required in those who are receiving chronic optimal medical therapy and who have reasonable expectation of survival with a good functional status for more than 1 y. (Level of Evidence: C)"
"3. Patients with diabetes with ventricular arrhythmias should generally be treated in the same manner as patients without diabetes. (Level of Evidence: A)"
ACC/AHA Guidelines- ADA/AHA/ACCF Aspirin for Primary Prevention of Cardiovascular Events in People With Diabetes [3] (DO NOT EDIT)[edit | edit source]
“
Low-dose (75–162 mg/d) aspirin use for prevention is reasonable for adults with diabetes and no previous history of vascular disease who are at increased CVD risk (10 year risk of CVD events over 10%) and who are not at increased risk for bleeding (based on a history of previous gastrointestinal bleeding or peptic ulcer disease or concurrent use of other medications that increase bleeding risk, such as NSAIDS or warfarin). Those adults with diabetes at increased CVD risk include most men over age 50 years and women over age 60 years who have 1 or more of the following additional major risk factors: smoking, hypertension, dyslipidemia, family history of premature CVD, and albuminuria. (ACCF/AHA Class IIa, Level of Evidence: B) (ADA Level of Evidence: C)
Aspirin should not be recommended for CVD prevention for adults with diabetes at low CVD risk (men under age 50 years and women under 60 years with no major additional CVD risk factors; 10-year CVD risk under 5%) as the potential adverse effects from bleeding offset the potential benefits. (ACCF/AHA Class III, Level of Evidence: C) (ADA Level of Evidence: C)
Low-dose (75–162 mg/d) aspirin use for prevention might be considered for those with diabetes at intermediate CVD risk (younger patients with 1 or more risk factors, or older patients with no risk factors, or patients with 10-year CVD risk of 5–10%) until further research is available. (ACCF/AHA Class IIb, Level of Evidence: C) (ADA Level of Evidence: E)
↑Weiss J, Sumpio B (2006). "Review of prevalence and outcome of vascular disease in patients with diabetes mellitus". Eur J Vasc Endovasc Surg. 31 (2): 143–50. PMID 16203161.