The calcaneus bone known as the largest tarsal bone. Meanwhile, the Lover's fracture are the involvement of the calcaneal body and may be intra-articular or extra-articular[1][2].
The name "lover's fracture" is derived from this hypothetical fact that a lover may jump from great heights while trying to escape from the lover's spouse[3].
The main etiology of the calcaneal fracture is thought to be a loading may be placed on a leg during falling or from a direct blow to the side of the hip. The main cause of calcaneal fracture is trauma. Such as the most fractures the calcaneal fracture is caused by a falling or automobile accident. Meanwhile, the normal healthy bones are extremely tough and resilient and can withstand most powerful impacts. As a person age, two factors cause higher risk of fractures[1]:
Weaker bones
Greater risk of falling
Stress fractures as a common causes of fractures can be found due to the repeated stresses and strains. Importantly children having more physically active lifestyles than adults, are also prone to fractures. People with any underlying diseases such as osteoporosis, infection, or a tumor affecting their bones having a higher risk of fractures. As mentioned in previous chapters, this type of fracture is known as a pathological fracture. Stress fractures, which result from repeated stresses and strains, commonly found among professional sports people, are also common causes of fractures[4].
The main etiology of the calcaneal fracture is thought to thee excessive high-energy axial load to patients heel moving the the talus downward onto the calcaneus bone and causing the injury.
inversion stress to the ankle joint.
The ankle is more stable and resistant to eversion injuries than inversion injuries Because:
The medial malleolus is shorter than the lateral malleolus causing higher range of the invertion than evertion of the talus bone.
The deltoid ligament stabilized the medial wall of the ankle joint
On the other hand, the transverse malleolar, Vertical malleolar, and posterior malleolar fractures are associated with an avulsion injury, talar impaction, and other bone and/or ligamentous injury, respectively.
In 80% of ankle fractures the foot is in supination position while, in 20% of fractures the foot is in pronation position. The calcaneus bone fracture is caused by a falling or direct trauma to the ankle joint. The form and severity of this fracture depends on the position of the ankle joint at the moment of the trauma. The ankle joint is flexible but the medial side of the ankle joint is rigid because the medial malleolus is attached to the tibia and also the medial collateral ligaments are very strong. Also, lateral wall of the ankle include: the fibula, syndesmosis and lateral collateral ligaments play important rolls in this flexibility. This lateral wall of the ankle allows the talus to move in lateral and dorsal sides easily. The fibula has no weight-bearing roll but it provide a flexible lateral support. The syndesmosis is formed by the anterior and posterior tibiofibular ligaments which is the fibrous connection between the fibula and tibia.
If we imagine the ankle as a ring in which bones and ligaments play an important role in the maintaining the stability of this joint. Meanwhile, if this ring is broken in one place it remains stable but when it is broken in two places, the ring is unstable and it is at the higher risk of fracture. Consequently the ankle is unstable when both the medial and the lateral malleoli are fractured.
Its known that the calcaneus bone fracture in normal healthy adults can be caused due to the high-energy trauma (e.g., motor vehicle accidents), sport related injuries, falling from height. But it should be noted that the most important Risk factors for insufficiency fractures is chronic metabolic disease such as steoporosis, osteopenia, eating-disordered behavior, higher age, prolonged corticosteroid usage, female gender, lower BMI, history of a recent falling, and prior fracture.
The pattern of bone fracture and severity of injury depends on variety of factors such as:
Patients age
Patients Weight
Patients past medical history specifically any bone diseases affecting the quality of bone (such as osteoporosis, malignancies)
Energy of trauma
Bone quality
Position of the specific organ during the trauma
The below-mentioned processes cause decreased bone mass density:
In the orthopedic medicine its important to know that the ankle fracture should be evaluated using radiography for both confirming diagnosis and also for evaluating the surrounding tissues.
Acute compartment syndrome of ankle joint
Ankle Dislocation
Soft tissue Injury around the ankle ,
Deep Venous thrombosis
Thrombophlebitis
Foot Fracture
Gout
Pseudogout
Rheumatoid Arthritis
Tibia Fracture
Fibula Fracture
bimalleolar fracture
trimalleolar fracture
triplane fracture
Tillaux fracture
Bosworth fracture
pilon fracture
Wagstaffe-Le Forte fracture
Charcot-Marie-Tooth disease: in cases with repeated ankle fractures
The calcaneus bone fracture accounts for 2% of all fractures and also is known as the most most frequent tarsal fracture (60% of all tarsal fractures) and including the 17% of open fractures
The Ankle fracture may be classified based on the exact location of fracturePMC4908218:
The Sanders classification is used for the intraarticular calcaneal fractures evaluations affecting the posterior facet of the calcaneus.
This Sanders classification is based on the number and location of the intraarticular fractures using the semicoronal CT images as follow:
Description
Detail
Image
Type 1
No-displaced
Type 2
Two part fracture
A- Lateral third
Calcaneal fracture Type 2a
B- Central third
Calcaneal fracture Type 2b
C- Medial Third
Calcaneal fracture Type 2c
Type 3
Three part fracture
AB- Involvement of the lateral and central apsects of the posterior facet of the calcaneus,
Calcaneal fracture Type 3AB
AC- Involvement of the lateral and medial apsects of the posterior facet of the calcaneus.
Calcaneal fracture Type 3AC
BC- Involvement of the central and medial apsects of the posterior facet of the calcaneus
Calcaneal fracture Type 3BC
Type 4
more than three part fracture (four or more fragments)
The Regazzoni classification is used for the intraarticular calcaneal fractures evaluations affecting the posterior facet of the calcaneus[5].
This Regazzoni classification is based on the number and location of the intraarticular fractures using the semicoronal CT images as follow:
The Regazzoni classification differs from other CT based classifications because it evaluates intra-articular fractures, extra-articular fractures and the calcaneocuboid joint. Therefore, it is more accurate in detecting the lesions.
Regazzoni classification
Main Group
subgroups according to fracture severity
Type A: Peripheral fractures
A1: extra-articular
A2: avulsion fractures of the sustentaculum
A3: fractures of the anterior process
Type B, Fractures of the talocalcaneal joint
B1: posterior facet single
B2: posterior facet multiple
B3: tarsal sinus or middle or anterior facet)
Type C, Fractures of the talocalcaneal and the calcaneocuboid joints
Osteoporosis is an important risk factor for human affecting human bone especially in men with the age of older than 50 years old and postmenopausal and women.
· Women with the age of 65≤ year old, with no previous history of pathological fracture due to the osteoporosis
· Women with the age of <65 years, with 10-year fracture risk of not less than a 65-year-old white woman (who has not any other risk factor)
Accordingly women older than age of 50 are the main target for the osteoporosis screening. There is no specific recommendation to screen men for the osteoporosis.
*It should be noted of the two above mentioned modalities for screening the ultrasonograhy is preferred to the DXA due to its lower cost, lower ionizing radiation, more availability.
After the primary evaluation of the osteoporosis, the further evaluation are required in some cases such as:
· Women with normal bone density or mild osteopenia: T-score of greater than −1.50 – should have screening for 15 years.
· Women with moderate osteopenia: T-score of −1.50 to −1.99 – should have screening for 5 years.
· Women with advanced osteopenia: T-score of −2.00 to −2.49 - should have screening for 1 year.
Natural History, Complications and Prognosis[edit | edit source]
Successful treatment of calcaneus bone fracture depends on the on-time interventions such as: accurate diagnosis and appropriate treatment and referral. Complex open fractures with soft-tissue injuries have a worse prognosis than isolated closed calcaneus bone fracture.
In the physical exam the orthopedic surgeon should check the vascular status and amount of swelling in the ankle. In MULTI-trauma patients or in comatose or obtunded patients a tense compartment with neurological signs or stretch pain should be considered as the compartment syndrome, and the compartment pressures should be measured and monitored. Normally the pain and soft-tissue swelling are found at the injury site. This injury should be confirmed using a radiographic evaluations.
Fractured bone deformity may be touchable in the internal side of the ankle if the fracture is displaced
In the physical exam the orthopedic surgeon should check the vascular status and amount of swelling in the ankle. In polytrauma patients or in comatose or obtunded patients a tense compartment with neurological signs or stretch pain should be considered as the compartment syndrome, and the compartment pressures should be measured and monitored.
There is a limited laboratory tests useful in the diagnosis of bone fractures such as the calcaneus bone fracture. Meanwhile, aged men and women may have some abnormalities in their laboratory findings suggestive of osteoporosis.
Laboratory tests for the diagnosis of osteoporosis are:
The orthopedic surgeon should consider to have at least two radiographic projections (ie, anteroposterior [AP] and lateral) of the ankle. These show the fracture, the extent of displacement, and the extent of comminution. The orthopedic surgeon should pay serious attention toward finding any foreign bodies in open fractures and gunshot injuries. Also imperative is to include the elbow and wrist joint in the radiographs of calcaneus bone fracture to ensure that the distal radioulnar joint injuries are not missed[8][9].
Frontal Plain films show a comminuted fracture of the left calcaneus with a flattening of Bohler's angle.
Lateral Plain films show a comminuted fracture of the left calcaneus with a flattening of Bohler's angle.
Lateral Plain films show a comminuted fracture of the left calcaneus with a flattening of Bohler's angle.
Frontal Plain films show a comminuted fracture of the left calcaneus with a flattening of Bohler's angle.
Plain films show a comminuted fracture of the left calcaneus with a flattening of Bohler's angle.
Magnetic resonance imaging (MRI) is an expensive technique that should not be used routinely.
MRI is a powerful diagnostic tool to assess the abnormalities of the bone, ligaments and soft tissues associated with the calcaneus bone fracture, but it is known as a limited utility in radioulnar injuries and is not indicated in uncomplicated calcaneus bone fracture.
Meanwhile, the MRI can be useful in in following mentioned evaluations:
Small subtle non displaced fissure fracture of persistent dark signal intensity is seen traversing the anterior beak of the calcaneus bone with surrounding extensive marrow edema signal eliciting high signal at STIR WI.
Small subtle non displaced fissure fracture of persistent dark signal intensity is seen traversing the anterior beak of the calcaneus bone with surrounding extensive marrow edema
Dynamic flow and blood pool images show increased perfusion and vascularity at the right heel. Delayed static images show an intense increase in tracer uptake localized to the posterior aspect of the right calcaneum highly suspicious of a fracture.
Dynamic flow and blood pool images show increased perfusion and vascularity at the right heel. Delayed static images show an intense increase in tracer uptake localized to the posterior aspect of the right calcaneum highly suspicious of a fracture.
Immediate stabilization of patients is the first step. Then the radial fracture and the DRUJ stabilization is recommended in these cases. Open ankle fractures considered as a surgical emergency. calcaneus bone fracture occurs in younger patients who are skeletally immature; the normally they treated using a closed reduction and casting. Since closed reduction and cast application have led to unsatisfactory results. Then, Almost always the open reduction are necessary for the calcaneus bone fracture. There are controversies regarding the indications for intramedullary nailing of ankle fractures[15].
The first step in managing a patient with a fracture is to stabilize the patient if he/she is unstable due to blood loss, etc by giving them intravenous fluids and giving them some painkillers if the pain is severe.
In children, the usual plan is to attempt closed reduction followed by cast immobilization. In adults, treatment with immobilization in a molded long arm cast can be used in those rare occasions of a non-displaced fracture of the ankle joint. If the fracture shifts in position, it may require surgery to put the bones back together.
Rigid immobilization is suggested in preference to removable splints in nonoperative treatment for the management of the calcaneus bone fracture
Operative fixation is suggested in preference to cast fixation for fractures with post-reduction radial shortening greater than 3 mm, dorsal tilt greater than 10º, or intra-articular displacement or step-off greater than 2 mm.
Patients probably do not need to begin early wrist motion routinely after stable fracture fixation.
Adjuvant treatment of calcaneus bone fracture with vitamin C is suggested for the prevention of disproportionate pain
Lateral epicondylar fractures should be immobilized for 7 days with patients elbow flexed at 90º, with the supinated ankle , and the extended wrist for relaxing the extensor muscles.
Returning to the normal physical activity after calcaneus bone fracture can take weeks to months of therapy under supervision an orthopedist. Meanwhile, a physiotherapy can be helpful for patient to achieve the normal wrist and elbow function caused by the immobilisation. All adult calcaneus bone fracture should be considered to be treated with open reduction and internal fixation (ORIF).
Post operation Calcaneal fracture
Post operation Calcaneal fracture
Post operation Calcaneal fracture
External fixation: For severe open fractures
Open reduction and internal fixation: For calcaneus bone fracture which depending on each patients condition the following may be needed:
Nerve placement
Bone grafting
Osteotomy
Arthrodesis
There are a variety of methods and implants useful to stabilize the calcaneus bone fracture, ranging from closed reduction and percutaneous pin fixation to the use of intra-medullary devices.
Pain after an injury or surgery is a natural part of the healing process.
Medications are often prescribed for short-term pain relief after surgery or an injury such as:
opioids
non-steroidal anti-inflammatory drugs (NSAIDs)
local anesthetics
Be aware that although opioids help relieve pain after surgery or an injury, they are a narcotic and can be addictive. It is important to use opioids only as directed by doctor.[edit | edit source]
Complex calcaneus bone fracture warrant individualized immobilization and rehabilitation strategies.
Because most multifragmentary calcaneus bone fracture are the result of high-energy injuries, a prolonged period of wrist immobilization and soft-tissue rest may be beneficial and has not been shown to affect clinical outcomes.
The ankle is typically immobilized for 6 weeks post-operatively in a splint with Full weight bearing commences at approximately 3 months post-operatively after consolidation of the fracture is noted on radiographs.
The presence of varying degrees of ankle stiffness is inevitable and may result from poor pain control, lack of effort in controlled mobilization, edema, concomitant ipsilateral lower extremityfractures, or peripheralnerve injuries. Early stretching and mobilization of the intrinsic and extrinsic tendons of the hand is important to prevent finger stiffness. Edema control can be initiated with compression gloves, digital massage, and active and passive ROM of the ankle. A home exercise program or outpatient occupational therapy is started immediately post-operatively to maintain full range of motion of the ankle and limit the development of intrinsic muscle tightnes
It should be noted that the Post-menopausal women specially older than the age of 65 are at the higher risk of osteoporosis consequently these type of patients at greater risk for the pathological fractures[23][24].
So the Calcium and vitamin D supplementation play important role in increasing the bone mineral density (BMD) consequently decrease the risk of fracture in these type of patients. Also, avoiding excessive alcohol and quitting smoking play important role in this regard.
The primary goal for the treatment of osteoporosis is to reduce longtime fracture risk in patients. Increasing bone mineral density (BMD) in response to the treatment is far less important than improvement of clinical aspects of osteoporosis, i.e., osteoporoticfracture. Therefore, most of the drugs efficacy is measured by the extent they improve the fracture risk instead of increasing BMD.
During the treatment, if a single fracture happens, it does not necessarily indicate treatment failure or the need to be started on an alternative treatment or patient referral to a specialist.
↑ 1.01.1Reichel R, Monstein HJ, Jansen HW, Philipson L, Benecke BJ (May 1982). "Small nuclear RNAs are encoded in the nontranscribed region of ribosomal spacer DNA". Proc. Natl. Acad. Sci. U.S.A. 79 (10): 3106–10. doi:10.1073/pnas.79.10.3106. PMID6179077.
↑ 2.02.1Tomasini M, Meciani L, Sartorelli E (December 1965). "[Observations on the subject of digitalis therapy of chronic pulmonary heart disease]". Minerva Med. (in Italian). 56 (101): 4470–82. PMID5862705.CS1 maint: Unrecognized language (link)
↑Lee P, Hunter TB, Taljanovic M (2004). "Musculoskeletal colloquialisms: how did we come up with these names?". Radiographics. 24 (4): 1009–27. doi:10.1148/rg.244045015. PMID15256625.
↑Fikhman BA, Sirotiuk LV, Petukhov VG (April 1966). "[Photometric analysis of bacterial suspensions. IV. On the possibility of using the osmotic effect to determine the relationship between live and dead cells in suspensions of tularemia bacteria]". Zh. Mikrobiol. Epidemiol. Immunobiol. (in Russian). 43 (4): 130–4. PMID6004727.CS1 maint: Unrecognized language (link)
↑ 5.05.1Ventrucci M, Gullo L, Daniele C, Bartolucci C, Priori P, Platé L, Bonora G, Labò G (1983). "Comparative study of serum pancreatic isoamylase, lipase, and trypsin-like immunoreactivity in pancreatic disease". Digestion. 28 (2): 114–21. doi:10.1159/000198973. PMID6197334.
↑ 6.06.16.2Belmonte M, Scardovi C, Tabacchi G (April 1966). "[Rheographic control cerebral hemodynamic effects induced by roentgen irradiation on the cervical sympathetic system in subjects with tapeto-retinal degenerations]". Ann Ottalmol Clin Ocul (in Italian). 92 (4): 235–46. PMID5961258.CS1 maint: Unrecognized language (link)
↑ 7.07.1Masztalerz A, Bujwidowa B, Jagielska I, Masztalerzowa Z, Potoczek J, Szczepańska H, Warych B (September 1983). "[Social class and dental and occlusal conditions]". Czas Stomatol (in Polish). 36 (9): 691–5. PMID6584293.CS1 maint: Unrecognized language (link)
↑Saito Y (December 1973). "[Comparison of ACTH and insulin actions on sugar transport in their target organs]". Nihon Naibunpi Gakkai Zasshi (in Japanese). 49 (12): 1436–46. doi:10.1507/endocrine1927.49.12_1436. PMID4359527.CS1 maint: Unrecognized language (link)
↑Wilesmith JW, Bode R, Pritchard DG, Stuart FA, Sayers PE (August 1986). "Tuberculosis in East Sussex. I. Outbreaks of tuberculosis in cattle herds (1964-1984)". J Hyg (Lond). 97 (1): 1–10. doi:10.1017/s0022172400064305. PMID3734437.
↑ 10.010.1Hopkins NF, Spinks TJ, Rhodes CG, Ranicar AS, Jamieson CW (January 1983). "Positron emission tomography in venous ulceration and liposclerosis: study of regional tissue function". Br Med J (Clin Res Ed). 286 (6362): 333–6. doi:10.1136/bmj.286.6362.333. PMID6402087.
↑Awachie JB (November 1965). "The ecology of Echinorhynchus truttae Schrank, 1788 (Acanthocephala) in a trout stream in North Wales". Parasitology. 55 (4): 747–62. PMID5895366.
↑Sieber-Blum M, Reed W, Lidov HG (October 1983). "Serotoninergic differentiation of quail neural crest cells in vitro". Dev. Biol. 99 (2): 352–9. doi:10.1016/0012-1606(83)90285-3. PMID6352372.
↑Earl RT, Hunneyball IM, Billett EE, Mayer RJ (March 1988). "Evaluation of reconstituted Sendai virus envelopes as intra-articular drug vectors: effects on normal and experimentally arthritic rabbit knee joints". J. Pharm. Pharmacol. 40 (3): 166–70. doi:10.1111/j.2042-7158.1988.tb05211.x. PMID2899144.
↑Hemindra D (1981). "[Internal resorption of the primary teeth (case report)]". J Dent Assoc Thai (in Thai). 31 (4): 176–83. PMID6951845.CS1 maint: Unrecognized language (link)
↑Sharygin AA (January 1970). "[A complex study of stomach and intestinal functioning in experimental pleuropneumonia]". Biull Eksp Biol Med (in Russian). 69 (1): 40–3. PMID5450139.CS1 maint: Unrecognized language (link)
↑Darmon A, Zangvill M, Cabantchik ZI (January 1983). "New approaches for the reconstitution and functional assay of membrane transport proteins. Application to the anion transporter of human erythrocytes". Biochim. Biophys. Acta. 727 (1): 77–88. doi:10.1016/0005-2736(83)90371-1. PMID6824657.
↑Dygalo NN, Markel' AL, Naumenko EV (March 1987). "[Prenatal hydrocortisone modification of the adrenocortical function of adult rats with hereditary arterial hypertension]". Biull Eksp Biol Med (in Russian). 103 (3): 287–9. PMID3828503.CS1 maint: Unrecognized language (link)
↑Yamagishi M, Kanazi K, Usui T, Ishikura H, Izumi Y, Kamamoto T, Okubo T, Konishi H, Miki M, Sawada H (July 1984). "A case of myeloid metaplasia with fatty and partially fibrotic bone marrow". Nippon Ketsueki Gakkai Zasshi. 47 (4): 982–9. PMID6507023.
↑Beckmann G, Wingberg J, Hasund A (October 1983). "[Computer-assisted cephalometry using the Bergen technic]". Fortschr Kieferorthop (in German). 44 (5): 359–69. doi:10.1007/bf01994542. PMID6583145.CS1 maint: Unrecognized language (link)
↑Pols J (January 1985). "[Involuntary commitment: therapy or confinement?]". Tijdschr Ziekenverpl (in Dutch; Flemish). 38 (2): 47–52. PMID3849198.CS1 maint: Unrecognized language (link)
↑ 22.022.1Fainstein V, Bodey GP, Fekety R (June 1981). "Relapsing pseudomembranous colitis associated with cancer chemotherapy". J. Infect. Dis. 143 (6): 865. doi:10.1093/infdis/143.6.865. PMID6166695.
↑Lotte A, Hatton F, Beust M, Rozenberg M (1966). "[Statistical report on the activities of departmental centers of BCG vaccination in 1964]". Bull Inst Natl Sante Rech Med (in French). 21 (2): 389–98. PMID5930824.CS1 maint: Unrecognized language (link)
↑Lopetegui R, Sosa Miatello C (1965). "[Protein components in extracts of cultured Trypanosoma cruzi (crithidias)]". Rev Soc Argent Biol (in Spanish; Castilian). 41 (5): 190–6. PMID5888141.CS1 maint: Unrecognized language (link)
↑Sy M, Pilet C, Niel M, Maillet M, Goret P (1965). "[Antibacterial actions of some halogenated derivatives of m-xylenol]". Therapie (in French). 20 (4): 1071–7. PMID5845202.CS1 maint: Unrecognized language (link)