From Wikidoc - Reading time: 10 min
An electron microscope is a type of microscope that uses electrons as a way to illuminate and create an image of a specimen. It has much higher magnification and resolving power than a light microscope, with magnifications up to about two million times, compared to about two thousand that can be achieved with visible light.
This high magnification allows electron microscopes to see smaller objects and greater detail in these objects. Unlike a light microscope, which uses glass lenses to focus light, the electron microscope uses electrostatic and electromagnetic lenses to control the illumination and imaging of the specimen.

The first electron microscope prototype was built in 1931 by the German engineers Ernst Ruska and Max Knoll.[1] It was based on the ideas and discoveries of French physicist Louis de Broglie. Although it was primitive and not fit for practical use, the instrument was still capable of magnifying objects by four hundred times.
Reinhold Rudenberg, the research director of Siemens, had patented the electron microscope in 1931, although Siemens was doing no research on electron microscopes at that time. In 1937 Siemens began funding Ruska and Bodo von Borries to develop an electron microscope. Siemens also employed Ruska's brother Helmut to work on applications, particularly with biological specimens.[2][3]
In the same decade of 1930s Manfred von Ardenne pioneered the scanning electron microscope and his universal electron microscope.[4]
Siemens produced the first commercial TEM in 1939, but the first practical electron microscope had been built at the University of Toronto in 1938, by Eli Franklin Burton and students Cecil Hall, James Hillier and Albert Prebus.[5]
Although modern electron microscopes can magnify objects up to two million times, they are still based upon Ruska's prototype. The electron microscope is an integral part of many laboratories. Researchers use it to examine biological materials (such as microorganisms and cells), a variety of large molecules, medical biopsy samples, metals and crystalline structures, and the characteristics of various surfaces. The electron microscope is also used extensively for inspection, quality assurance and failure analysis applications in industry, including, in particular, semiconductor device fabrication.
Major manufacturers include:
The original form of electron microscopy, Transmission electron microscopy (TEM) involves a high voltage electron beam emitted by a cathode, usually a tungsten filament and focused by electrostatic and electromagnetic lenses. The electron beam that has been transmitted through a specimen that is in part transparent to electrons carries information about the inner structure of the specimen in the electron beam that reaches the imaging system of the microscope. The spatial variation in this information (the "image") is then magnified by a series of electromagnetic lenses until it is recorded by hitting a fluorescent screen, photographic plate, or light sensitive sensor such as a CCD (charge-coupled device) camera. The image detected by the CCD may be displayed in real time on a monitor or computer.
Resolution of the TEM is limited primarily by spherical aberration, but a new generation of aberration correctors have been able to partially overcome spherical aberration to increase resolution. Software correction of spherical aberration for the High Resolution TEM HRTEM has allowed the production of images with sufficient resolution to show carbon atoms in diamond separated by only 0.89 ångström (89 picometers) and atoms in silicon at 0.78 ångström (78 picometers)[6][7] at magnifications of 50 million times.[8] The ability to determine the positions of atoms within materials has made the HRTEM an important tool for nano-technologies research and development.
Unlike the TEM, where electrons of the high voltage beam form the image of the specimen, the Scanning Electron Microscope (SEM)[9] produces images by detecting low energy secondary electrons which are emitted from the surface of the specimen due to excitation by the primary electron beam. In the SEM, the electron beam is rastered across the sample, with detectors building up an image by mapping the detected signals with beam position.
Generally, the TEM resolution is about an order of magnitude greater than the SEM resolution, however, because the SEM image relies on surface processes rather than transmission it is able to image bulk samples and has a much greater depth of view, and so can produce images that are a good representation of the 3D structure of the sample.
In addition there is a Reflection Electron Microscope (REM). Like TEM, this technique involves electron beams incident on a surface, but instead of using the transmission (TEM) or secondary electrons (SEM), the reflected beam is detected. This technique is typically coupled with Reflection High Energy Electron Diffraction and Reflection high-energy loss spectrum (RHELS). Another variation is Spin-Polarized Low-Energy Electron Microscopy (SPLEEM), which is used for looking at the microstructure of magnetic domains.[10]
The STEM combines the high resolution of the TEM with the beam rastering functions of the SEM, allowing a range of analytical techniques to be used that are not possible with conventional TEM.

Materials to be viewed under an electron microscope may require processing to produce a suitable sample. The technique required varies depending on the specimen and the analysis required:

Electron microscopes are expensive to buy and maintain. They are dynamic rather than static in their operation: requiring extremely stable high-voltage supplies, extremely stable currents to each electromagnetic coil/lens, continuously-pumped high-/ultra-high-vacuum systems, and a cooling water supply circulation through the lenses and pumps. As they are very sensitive to vibration and external magnetic fields, microscopes aimed at achieving high resolutions must be housed in buildings (sometimes underground) with special services. Newer generations of TEM operating at lower voltages (around 5 kV) do not have stringent voltage supply, lens coil current, cooling water or vibration isolation requirements and as such are much less expensive to buy and far easier to install and maintain.
The samples have to be viewed in vacuum, as the molecules that make up air would scatter the electrons. Recent advances have allowed hydrated samples to be imaged using an environmental scanning electron microscope
Scanning electron microscopes usually image conductive or semi-conductive materials best. Non-conductive materials can be imaged by an environmental scanning electron microscope. A common preparation technique is to coat the sample with a several-nanometer layer of conductive material, such as gold, from a sputtering machine; however this process has the potential to disturb delicate samples.
The samples have to be prepared in many ways to give proper detail, which may result in artifacts purely the result of treatment. This gives the problem of distinguishing artifacts from material, particularly in biological samples. Scientists maintain that the results from various preparation techniques have been compared, and as there is no reason that they should all produce similar artifacts, it is therefore reasonable to believe that electron microscopy features correlate with living cells. In addition, higher-resolution work has been directly compared to results from X-ray crystallography, providing independent confirmation of the validity of this technique. Recent work performed on unfixated, vitrified specimens has also been performed, further confirming the validity of this technique.
|
Semiconductor & Data Storage Biology & Life Sciences |
Research
Industry |
|month= ignored (help); Check date values in: |date=, |year= / |date= mismatch (help)
|month= ignored (help); Check date values in: |date=, |year= / |date= mismatch (help)
ca:Microscopi electrònic cs:Elektronový mikroskop da:Elektronmikroskop de:Elektronenmikroskop eo:Elektrona mikroskopo fa:میکروسکوپ الکترونی gl:Microscopio electrónico hr:Elektronski mikroskop id:Mikroskop elektron it:microscopio elettronico he:מיקרוסקופ אלקטרוני ms:Mikroskop elektron nl:Elektronenmicroscopie mk:Електронски микроскоп no:Elektronmikroskop simple:Electron microscope fi:Elektronimikroskooppi sv:Elektronmikroskop ta:இலத்திரன் நுண்நோக்கி Template:Jb1