Kruppel-like factor 4 (KLF4; gut-enriched Krüppel-like factor or GKLF) is a zinc-finger transcription factor, and it was first identified in 1996.[1] KLF4 is a member of the KLF family of transcription factors, which belongs to the relatively large family of SP1-like transcription factors.[2][3][4] KLF4 is involved in the regulation of proliferation, differentiation, apoptosis and somatic cell reprogramming. Evidence also suggests that KLF4 is a tumor suppressor in certain cancers, including Colorectal cancer.[5] It has three C2H2-zinc fingers at its carboxyl terminus that are closely related to another KLF, KLF2.[3] It has two nuclear localization sequences that signals it to localize to the nucleus.[6] In embryonic stem cells (ESCs), KLF4 has been demonstrated to be a good indicator of stem-like capacity. It is suggested that the same is true in mesenchymal stem cells (MSCs).
In humans, the protein is 513 amino acids with a predicted molecular weight of approximately 55kDa and is encoded by the KLF4gene.[7] The KLF4 gene is conserved in chimpanzee, rhesus monkey, dog, cow, mouse, rat, chicken, zebrafish, and frog.[8]
KLF4 can activate transcription by interacting via it N-terminus with specific transcriptional co-activators, such as p300-CBP coactivator family.[9][10][11] Transcriptional repression by KLF4 is carried out by KLF4 competing with an activator for binding to a target DNA sequence (9-12).[12][13][14][15] KLF4 has been shown to interact with CREB-binding protein.[16]
It was found that the transcription factor Klf4 present at the promoter of an enzymatic subunit of telomerase (TERT), where it formed a complex with
β-catenin. Klf4 was required for accumulation of β-catenin at the Tert promoter but was unable to stimulate Tert expression in the absence of β-catenin.[17]
KLF4 has diverse functions, and has been garnering attention in recent years because some of its functions are apparently contradicting, but mainly since the discovery of its integral role as one of four key factors that are essential for inducing pluripotent stem cells.[18][19] KLF4 is highly expressed in non-dividing cells and its overexpression induces cell cycle arrest.[1][20][21][22][23] KLF4 is particularly important in preventing cell division when the DNA is damaged.[20][22][23][24] KLF4 is also important in regulating centrosome number and chromosome number (genetic stability),[25][26][27] and in promoting cell survival.[28][29][30][31][32][33] However, some studies have revealed that under certain conditions KLF4 may switch its role from pro-cell survival to pro-cell death.[32][34][35][36]
KLF4 is expressed in the cells that are non-dividing and are terminally differentiated in the intestinal epithelium, where KLF4 is important in the regulation of intestinal epithelium homeostasis (terminal cell differentiation and proper localization of the different intestinal epithelium cell types).[37][38][39][40] In the intestinal epithelium, KLF4 is an important regulator of Wnt signaling pathway genes of genes regulating differentiation.[40]
KLF4 is expressed in a variety of tissues and organs such as: the cornea where it is required for epithelial barrier function[41][42] and is a regulator of genes required for corneal homeostasis;[43] the skin where it is required for the development of skin permeability barrier function;[44][45][46] the bone and teeth tissues where it regulates normal skeletal development;[47][48][49][50] epithelial cell of the mouse male and female reproductive tract[51] where in the males it is important for proper spermatogenesis;[52][53][54] vascular endothelial cells[55] where it is critical in preventing vascular leakage in response to inflammatory stimuli;[56] white blood cells where it mediates inflammatory responses cellular differentiation[57][58][59][60] and proliferation;[60][61] the kidneys where it is involved in the differentiation of embryonic stem cells and induced pluripotent stem (iPS) cells to renal lineage in vitro[62] and its dysregulation has been linked to some renal pathologies.[63][64][65]
Several lines of evidence have shown that KLF4 role in disease is context dependent where under certain conditions it may play one role and under different conditions it may assume a complete opposite role.
However, in some cancer types KLF4 may act as a tumor promoter where increased KLF4 expression has been reported, such as in oral squamous cell carcinoma[72] and in primary breast ductal carcinoma.[73] Also, overexpression of KLF4 in skin resulted in hyperplasia and dysplasia,[74] which lead to the development of squamous cell carcinoma.[75] Similar finding in esophageal epithelium was observed, where overexpression of KLF4 resulted in increased inflammation that eventually lead to the development of esophageal squamous cell cancer in mice.[76]
The role of KLF4 in Epithelial–mesenchymal transition (EMT) is also controversial. It was shown to stimulate EMT in some systems by promoting/maintaining stemness of cancer cells, as is the case in pancreatic cancer,[77][78][79] head and neck cancer,[80]endometrial cancer,[81]nasopharyngeal cancer,[82] prostate cancer[83] and non-small lung cancer.[84] Under conditions of TGFβ-induced EMT KLF4 was shown to suppress EMT in the same systems where it was shown to promote EMT, such as prostate cancer[85] and pancreatic cancer.[86] Additionally, KLF4 was shown to suppress EMT in epidermal cancer,[87] breast cancer,[32] lung cancer,[88] cisplatin-resistant nasopharyngeal carcinoma cells,[89] and in hepatocellular carcinoma cells.[90]
KLF4 plays an important role in several vascular diseases where it was shown to regulate vascular inflammation by controlling macrophage polarization[91] and plaque formation in atherosclerosis.[92][93][94] It up-regulates Apolipoprotein E, which is an anti-atherosclerotic factor.[93] It is also involved in the regulation of angiogenesis. It may suppress angiogenesis by regulating NOTCH1 activity,[95] while in the central nervous system its overexpression leads to vascular dysplasia.[96]
KLF4 may promote inflammation by mediating NF-κB-dependent inflammatory pathway such as in macrophages,[14] esophageal epithelium[76] and in chemically-induced acute colitis in mice.[97] However, KLF4 may also suppress the activation of inflammatory signaling such as in endothelial cells in response to pro-inflammatory stimuli.[98]
KLF4 is essential for the cellular response to DNA damage. It is required for preventing cell cycle entry into mitosis following γ-irradiation-induced DNA damage,[22][23] in promoting DNA repair mechanisms (20) and in preventing the irradiated cell from undergoing programmed cell death (apoptosis) (23,25,26).[28][30][31] In one study, the in vivo importance of KLF4 in response to γ-irradiation-induced DNA damage was revealed where deletion of KLF4 specifically from the intestinal epithelium in mice lead to inability of the intestinal epithelium to regenerate and resulting in increased mortality of these mice.[31]
Takahashi and Yamanaka were the first identify KLF4 as one of four factors that are required to induce mouse embryonic and adult fibroblasts into pluripotent stem cells (iPS).[19] This was also found to be true for adult human fibroblasts.[18] Since 2006 up to today, the work on clinically relevant research in stem cells and stem cell induction, has increased dramatically (more than 10,000 research articles, as compared to about 60 between years 1900 to 2005). In vivo functional studies on the role of KLF4 in stem cells are rare. Recently a group investigated the role of KLF4 in a particular population of intestinal stem cells, the Bmi1+ stem cells.[33] This population of intestinal stem cells: are normally slow dividing, are known to be resistant to radiation injury, and are the ones responsible for intestinal epithelium regeneration following radiation injury.[99] The study showed that in the intestine, following γ-irradiation-induced DNA damage, KLF4 may regulate epithelial regeneration by modulating the fate of Bmi1+ stem cells themselves, and consequently the development of BMI1+ intestinal stem cell-derived lineage.[33]
↑Black AR, Black JD, Azizkhan-Clifford J (August 2001). "Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer". Journal of Cellular Physiology. 188 (2): 143–60. doi:10.1002/jcp.1111. PMID11424081.
↑Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B (December 1996). "A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells". The Journal of Biological Chemistry. 271 (49): 31384–90. doi:10.1074/jbc.271.49.31384. PMID8940147.
↑Evans PM, Zhang W, Chen X, Yang J, Bhakat KK, Liu C (November 2007). "Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation". The Journal of Biological Chemistry. 282 (47): 33994–4002. doi:10.1074/jbc.M701847200. PMID17908689.
↑Ai W, Liu Y, Langlois M, Wang TC (March 2004). "Kruppel-like factor 4 (KLF4) represses histidine decarboxylase gene expression through an upstream Sp1 site and downstream gastrin responsive elements". The Journal of Biological Chemistry. 279 (10): 8684–93. doi:10.1074/jbc.M308278200. PMID14670968.
↑ 14.014.1Feinberg MW, Cao Z, Wara AK, Lebedeva MA, Senbanerjee S, Jain MK (November 2005). "Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages". The Journal of Biological Chemistry. 280 (46): 38247–58. doi:10.1074/jbc.M509378200. PMID16169848.
↑Kanai M, Wei D, Li Q, Jia Z, Ajani J, Le X, Yao J, Xie K (November 2006). "Loss of Krüppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression". Clinical Cancer Research. 12 (21): 6395–402. doi:10.1158/1078-0432.CCR-06-1034. PMID17085651.
↑Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R (June 2012). "Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells". Science. 336 (6088): 1549–54. doi:10.1126/science.1218370. PMID22723415.
↑ 18.018.1Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (November 2007). "Induction of pluripotent stem cells from adult human fibroblasts by defined factors". Cell. 131 (5): 861–72. doi:10.1016/j.cell.2007.11.019. PMID18035408.
↑ 19.019.1Takahashi K, Yamanaka S (August 2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". Cell. 126 (4): 663–76. doi:10.1016/j.cell.2006.07.024. PMID16904174.
↑ 28.028.1Rowland BD, Bernards R, Peeper DS (November 2005). "The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene". Nature Cell Biology. 7 (11): 1074–82. doi:10.1038/ncb1314. PMID16244670.
↑ 29.029.1Yang Y, Goldstein BG, Chao HH, Katz JP (November 2005). "KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells". Cancer Biology & Therapy. 4 (11): 1216–21. doi:10.4161/cbt.4.11.2090. PMID16357509.
↑Liu MD, Liu Y, Liu JW, Zhang HL, Xiao XZ (December 2007). "[Effect of Krüppel-like factor 4 overexpression on heat stress-induced apoptosis of Raw264.7 macrophages]". Zhong Nan Da Xue Xue Bao. Yi Xue Ban = Journal of Central South University. Medical Sciences. 32 (6): 1002–6. PMID18182717.
↑Choi BJ, Cho YG, Song JW, Kim CJ, Kim SY, Nam SW, Yoo NJ, Lee JY, Park WS (2006). "Altered expression of the KLF4 in colorectal cancers". Pathology, Research and Practice. 202 (8): 585–9. doi:10.1016/j.prp.2006.05.001. PMID16814484.
↑Segre JA, Bauer C, Fuchs E (August 1999). "Klf4 is a transcription factor required for establishing the barrier function of the skin". Nature Genetics. 22 (4): 356–60. doi:10.1038/11926. PMID10431239.
↑Jaubert J, Cheng J, Segre JA (June 2003). "Ectopic expression of kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier". Development. 130 (12): 2767–77. doi:10.1242/dev.00477. PMID12736219.
↑Chen Z, Couble ML, Mouterfi N, Magloire H, Chen Z, Bleicher F (May 2009). "Spatial and temporal expression of KLF4 and KLF5 during murine tooth development". Archives of Oral Biology. 54 (5): 403–11. doi:10.1016/j.archoralbio.2009.02.003. PMID19268913.
↑Godmann M, Kosan C, Behr R (April 2010). "Krüppel-like factor 4 is widely expressed in the mouse male and female reproductive tract and responds as an immediate early gene to activation of the protein kinase A in TM4 Sertoli cells". Reproduction. 139 (4): 771–82. doi:10.1530/REP-09-0531. PMID20051481.
↑Behr R, Kaestner KH (July 2002). "Developmental and cell type-specific expression of the zinc finger transcription factor Krüppel-like factor 4 (Klf4) in postnatal mouse testis". Mechanisms of Development. 115 (1–2): 167–9. doi:10.1016/s0925-4773(02)00127-2. PMID12049784.
↑Sze KL, Lee WM, Lui WY (February 2008). "Expression of CLMP, a novel tight junction protein, is mediated via the interaction of GATA with the Kruppel family proteins, KLF4 and Sp1, in mouse TM4 Sertoli cells". Journal of Cellular Physiology. 214 (2): 334–44. doi:10.1002/jcp.21201. PMID17620326.
↑Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK (May 2007). "Kruppel-like factor 4 regulates endothelial inflammation". The Journal of Biological Chemistry. 282 (18): 13769–79. doi:10.1074/jbc.M700078200. PMID17339326.
↑Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD, Lloyd JA (2005). "A functional screen for Krüppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element". Blood Cells, Molecules & Diseases. 35 (2): 227–35. doi:10.1016/j.bcmd.2005.04.009. PMID16023392.
↑Liu J, Zhang H, Liu Y, Wang K, Feng Y, Liu M, Xiao X (October 2007). "KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages". Biochemical and Biophysical Research Communications. 362 (3): 575–81. doi:10.1016/j.bbrc.2007.07.157. PMID17719562.
↑Yusuf I, Kharas MG, Chen J, Peralta RQ, Maruniak A, Sareen P, Yang VW, Kaestner KH, Fruman DA (May 2008). "KLF4 is a FOXO target gene that suppresses B cell proliferation". International Immunology. 20 (5): 671–81. doi:10.1093/intimm/dxn024. PMID18375530.
↑Hayashi K, Sasamura H, Nakamura M, Sakamaki Y, Azegami T, Oguchi H, Tokuyama H, Wakino S, Hayashi K, Itoh H (October 2015). "Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria". Kidney International. 88 (4): 745–53. doi:10.1038/ki.2015.178. PMID26108068.
↑Mreich E, Chen XM, Zaky A, Pollock CA, Saad S (June 2015). "The role of Krüppel-like factor 4 in transforming growth factor-β-induced inflammatory and fibrotic responses in human proximal tubule cells". Clinical and Experimental Pharmacology & Physiology. 42 (6): 680–6. doi:10.1111/1440-1681.12405. PMID25882815.
↑Chen WC, Lin HH, Tang MJ (September 2015). "Matrix-Stiffness-Regulated Inverse Expression of Krüppel-Like Factor 5 and Krüppel-Like Factor 4 in the Pathogenesis of Renal Fibrosis". The American Journal of Pathology. 185 (9): 2468–81. doi:10.1016/j.ajpath.2015.05.019. PMID26212907.
↑Wei D, Gong W, Kanai M, Schlunk C, Wang L, Yao JC, Wu TT, Huang S, Xie K (April 2005). "Drastic down-regulation of Krüppel-like factor 4 expression is critical in human gastric cancer development and progression". Cancer Research. 65 (7): 2746–54. doi:10.1158/0008-5472.CAN-04-3619. PMID15805274.
↑Ohnishi S, Ohnami S, Laub F, Aoki K, Suzuki K, Kanai Y, Haga K, Asaka M, Ramirez F, Yoshida T (August 2003). "Downregulation and growth inhibitory effect of epithelial-type Krüppel-like transcription factor KLF4, but not KLF5, in bladder cancer". Biochemical and Biophysical Research Communications. 308 (2): 251–6. doi:10.1016/s0006-291x(03)01356-1. PMID12901861.
↑Foster KW, Ren S, Louro ID, Lobo-Ruppert SM, McKie-Bell P, Grizzle W, Hayes MR, Broker TR, Chow LT, Ruppert JM (June 1999). "Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF". Cell Growth & Differentiation. 10 (6): 423–34. PMID10392904.
↑Foster KW, Frost AR, McKie-Bell P, Lin CY, Engler JA, Grizzle WE, Ruppert JM (November 2000). "Increase of GKLF messenger RNA and protein expression during progression of breast cancer". Cancer Research. 60 (22): 6488–95. PMID11103818.
↑Pinho AV, Rooman I, Real FX (April 2011). "p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells". Cell Cycle. 10 (8): 1312–21. doi:10.4161/cc.10.8.15363. PMID21490434.
↑Wu A, Luo W, Zhang Q, Yang Z, Zhang G, Li S, Yao K (April 2013). "Aldehyde dehydrogenase 1, a functional marker for identifying cancer stem cells in human nasopharyngeal carcinoma". Cancer Letters. 330 (2): 181–9. doi:10.1016/j.canlet.2012.11.046. PMID23220285.
↑Ren D, Wang M, Guo W, Zhao X, Tu X, Huang S, Zou X, Peng X (April 2013). "Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR‑145". International Journal of Oncology. 42 (4): 1473–81. doi:10.3892/ijo.2013.1825. PMID23404342.
↑Liu S, Yang H, Chen Y, He B, Chen Q (2016). "Krüppel-Like Factor 4 Enhances Sensitivity of Cisplatin to Lung Cancer Cells and Inhibits Regulating Epithelial-to-Mesenchymal Transition". Oncology Research. 24 (2): 81–7. doi:10.3727/096504016X14597766487717. PMID27296948.
↑ 93.093.1Stavri S, Simionescu M, Kardassis D, Gafencu AV (December 2015). "Krüppel-like factor 4 synergizes with CREB to increase the activity of apolipoprotein E gene promoter in macrophages". Biochemical and Biophysical Research Communications. 468 (1–2): 66–72. doi:10.1016/j.bbrc.2015.10.163. PMID26546821.
↑Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK (May 2007). "Kruppel-like factor 4 regulates endothelial inflammation". The Journal of Biological Chemistry. 282 (18): 13769–79. doi:10.1074/jbc.M700078200. PMID17339326.
Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B (December 1996). "A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells". The Journal of Biological Chemistry. 271 (49): 31384–90. doi:10.1074/jbc.271.49.31384. PMID8940147.
Yet SF, McA'Nulty MM, Folta SC, Yen HW, Yoshizumi M, Hsieh CM, Layne MD, Chin MT, Wang H, Perrella MA, Jain MK, Lee ME (January 1998). "Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains". The Journal of Biological Chemistry. 273 (2): 1026–31. doi:10.1074/jbc.273.2.1026. PMID9422764.
Foster KW, Ren S, Louro ID, Lobo-Ruppert SM, McKie-Bell P, Grizzle W, Hayes MR, Broker TR, Chow LT, Ruppert JM (June 1999). "Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF". Cell Growth & Differentiation. 10 (6): 423–34. PMID10392904.
Segre JA, Bauer C, Fuchs E (August 1999). "Klf4 is a transcription factor required for establishing the barrier function of the skin". Nature Genetics. 22 (4): 356–60. doi:10.1038/11926. PMID10431239.
Chen ZY, Shie JL, Tseng CC (November 2002). "Gut-enriched Kruppel-like factor represses ornithine decarboxylase gene expression and functions as checkpoint regulator in colonic cancer cells". The Journal of Biological Chemistry. 277 (48): 46831–9. doi:10.1074/jbc.M204816200. PMID12297499.
Wang N, Liu ZH, Ding F, Wang XQ, Zhou CN, Wu M (December 2002). "Down-regulation of gut-enriched Kruppel-like factor expression in esophageal cancer". World Journal of Gastroenterology. 8 (6): 966–70. doi:10.3748/wjg.v8.i6.966. PMID12439907.
Mao Z, Song S, Zhu Y, Yi X, Zhang H, Shang Y, Tong T (July 2003). "Transcriptional regulation of A33 antigen expression by gut-enriched Krüppel-like factor". Oncogene. 22 (28): 4434–43. doi:10.1038/sj.onc.1206508. PMID12853980.
Ohnishi S, Ohnami S, Laub F, Aoki K, Suzuki K, Kanai Y, Haga K, Asaka M, Ramirez F, Yoshida T (August 2003). "Downregulation and growth inhibitory effect of epithelial-type Krüppel-like transcription factor KLF4, but not KLF5, in bladder cancer". Biochemical and Biophysical Research Communications. 308 (2): 251–6. doi:10.1016/S0006-291X(03)01356-1. PMID12901861.
Hinnebusch BF, Siddique A, Henderson JW, Malo MS, Zhang W, Athaide CP, Abedrapo MA, Chen X, Yang VW, Hodin RA (January 2004). "Enterocyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Kruppel-like factor". American Journal of Physiology. Gastrointestinal and Liver Physiology. 286 (1): G23–30. doi:10.1152/ajpgi.00203.2003. PMID12919939.