Microwaves are electromagnetic waves with wavelengths shorter than one meter and longer than one millimeter, or frequencies between 300 megahertz and 300 gigahertz. (UHF, SHF, EHF)
Apparatuses and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly the same as the dimensions of the equipment, so that lumped-element circuit theory is inaccurate. As a consequence, practical microwave technique tends to move away from the discrete resistors, capacitors, and inductors used with lower frequency radio waves. Instead, distributed circuit elements and transmission-line theory are more useful methods for design, analysis, and construction of microwave circuits. Open-wire and coaxial transmission lines give way to waveguides, and lumped-element tuned circuits are replaced by cavity resonators or resonant lines. Effects of reflection, polarization, scattering, diffraction, and atmospheric absorption usually associated with visible light are of practical significance in the study of microwave propagation. The same equations of electromagnetic theory apply at all frequencies.
While the name suggests a micrometer wavelength, it is better understood as indicating wavelengths very much smaller than those used in radio broadcasting. The boundaries between far infrared light, terahertz radiation, microwaves, and ultra-high-frequency radio waves are fairly arbitrary and are used variously between different fields of study. The term microwave generally refers to "alternating current signals with frequencies between 300 MHz (3×108 Hz) and 300 GHz (3×1011 Hz)."[1] (UHF, SHF, EHF)Both IEC standard 60050 and IEEE standard 100 define "microwave" frequencies starting at 1 GHz (30 cm wavelength).
Electromagnetic waves longer (lower frequency) than microwaves are called "radio waves". Electromagnetic radiation with shorter wavelengths may be called "millimeter waves", terahertz radiation or even T-rays. Definitions differ for millimeter wave band, which the IEEE defines as 110GHz to 300GHz while military radar definitions use 30-300GHz.
The existence of electromagnetic waves, of which microwaves are part of the frequency spectrum, was predicted by James Clerk Maxwell in 1864 from his equations. In 1888, Heinrich Hertz was the first to demonstrate the existence of electromagnetic waves by building an apparatus that produced and detected microwaves in the UHF region. The design necessarily used horse-and-buggy materials, including a horse trough, a wrought iron point spark, Leyden jars, and a length of zinc gutter whose parabolic cross-section worked as a reflection antenna. In 1894 J. C. Bose publicly demonstrated radio control of a bell using millimetre wavelengths, and conducted research into the propagation of microwaves.
The microwave range includes ultra-high frequency (UHF) (0.3–3 GHz), super high frequency (SHF) (3–30 GHz), and extremely high frequency (EHF) (30–300 GHz) signals.
Above 300 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so great that it is effectively opaque, until the atmosphere becomes transparent again in the so-called infrared and optical window frequency ranges.
Vacuum tube based devices operate on the ballistic motion of electrons in a vacuum under the influence of controlling electric or magnetic fields, and include the magnetron, klystron, travelling wave tube (TWT), and gyrotron. These devices work in the density modulated mode, rather than the current modulated mode. This means that they work on the basis of clumps of electrons flying ballistically through them, rather than using a continuous stream.
A maser is a device similar to a laser, except that it works at microwave frequencies.
The microwave spectrum is usually defined as electromagnetic energy ranging from approximately 1 GHz to 1000 GHz in frequency, but older usage includes lower frequencies. Most common applications are within the 1 to 40 GHz range. Microwave frequency bands, as defined by the Radio Society of Great Britain (RSGB), are shown in the table below: Template:MWband
Designation | Frequency range |
---|---|
L band | 1 to 2 GHz |
S band | 2 to 4 GHz |
C band | 4 to 8 GHz |
X band | 8 to 12 GHz |
Ku band | 12 to 18 GHz |
K band | 18 to 26.5 GHz |
Ka band | 26.5 to 40 GHz |
Q band | 30 to 50 GHz |
U band | 40 to 60 GHz |
V band | 50 to 75 GHz |
E band | 60 to 90 GHz |
W band | 75 to 110 GHz |
F band | 90 to 140 GHz |
D band | 110 to 170 GHz (Hot) |
The term P band is sometimes used for Ku Band. For other definitions see Letter Designations of Microwave Bands
Microwaves contain insufficient energy to directly chemically change substances by ionization, and so are an example of nonionizing radiation. The word "radiation" refers to the fact that energy can radiate, and not to the different nature and effects of different kinds of energy.
A great number of studies have been undertaken in the last two decades, most concluding they are safe. It is understood that microwave radiation at a level that causes heating of living tissue is hazardous (due to the possibility of overheating and burns) and most countries have standards limiting exposure, such as the Federal Communications Commission RF safety regulations.
Synthetic reviews of literature indicate the predominance of their safety of use. [3] [4]
Perhaps the first, documented, formal use of the term microwave occurred in 1931:
Perhaps the first use of the word microwave in an astronomical context occurred in 1946 in an article "Microwave Radiation from the Sun and Moon" by Robert Dicke and Robert Beringer.
For some of the history in the development of electromagnetic theory applicable to modern microwave applications see the following figures:
Specific significant areas of research and work developing microwaves and their applications:
Work carried out by | Area of work |
---|---|
Barkhausen and Kurz | Positive grid oscillators |
Hull | Smooth bore magnetron |
Varian Brothers | Velocity modulated electron beam → klystron tube |
Randall and Boot | Cavity magnetron |
Template:Radio spectrum
Template:Wireless video
Template:EMSpectrum
ar:مايكروويف bs:Mikrovalno zračenje bg:Микровълни ca:Microones cs:Mikrovlny da:Mikrobølge de:Mikrowellen el:Μικροκύματα eo:Mikroondoj fa:ریزموج gl:Microondas hr:Mikrovalovi id:Gelombang mikro it:Microonde he:מיקרוגל lv:Mikroviļņi lt:Mikrobangos li:Microgolf hu:Mikrohullám ms:Mikrogelombang nl:Microgolf no:Mikrobølge nn:Mikrobølgjer sq:Mikrovalët simple:Microwave sk:Mikrovlnné žiarenie sr:Микроталаси sh:Mikrotalasi fi:Mikroaalto sv:Mikrovågor yi:מיקראכוואליע