In telemetry, Remote sensing technology is defined as the "observation and acquisition of physical data from a distance by viewing and making measurements from a distance or receiving transmitted data from observations made at distant location."[1]
Transdermal optical imaging, using machine learning and video from a smartphone camera and using advanced machine learning may[2][3] or may not[4] be able to determine a subject's blood pressure.
Blood pressure[2]. The goal for accuracy is the ISO standard of "a device is considered acceptable if its estimated probability of a tolerable error (≤10 mmHg) is at least 85%"[7] or "average difference no greater than 5 mmHg and SD no greater than 8 mmHg"[8].
↑Lomaliza, Jean-Pierre; Park, Hanhoon (2019). "Improved Heart-Rate Measurement from Mobile Face Videos". Electronics. 8 (6): 663. doi:10.3390/electronics8060663. ISSN2079-9292.
↑Hermosilla, Gabriel; Verdugo, José Luis; Farias, Gonzalo; Vera, Esteban; Pizarro, Francisco; Machuca, Margarita (2018). "Face Recognition and Drunk Classification Using Infrared Face Images". Journal of Sensors. 2018: 1–8. doi:10.1155/2018/5813514. ISSN1687-725X.
↑ 12.012.1Kosilek, R P; Frohner, R; Würtz, R P; Berr, C M; Schopohl, J; Reincke, M; Schneider, H J (2015). "Diagnostic use of facial image analysis software in endocrine and genetic disorders: review, current results and future perspectives". European Journal of Endocrinology. 173 (4): M39–M44. doi:10.1530/EJE-15-0429. ISSN0804-4643.
↑Poplin, Ryan; Varadarajan, Avinash V.; Blumer, Katy; Liu, Yun; McConnell, Michael V.; Corrado, Greg S.; Peng, Lily; Webster, Dale R. (2018). "Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning". Nature Biomedical Engineering. 2 (3): 158–164. doi:10.1038/s41551-018-0195-0. ISSN2157-846X.
↑Milea, Dan; Najjar, Raymond P.; Zhubo, Jiang; Ting, Daniel; Vasseneix, Caroline; Xu, Xinxing; Aghsaei Fard, Masoud; Fonseca, Pedro; Vanikieti, Kavin; Lagrèze, Wolf A.; La Morgia, Chiara; Cheung, Carol Y.; Hamann, Steffen; Chiquet, Christophe; Sanda, Nicolae; Yang, Hui; Mejico, Luis J.; Rougier, Marie-Bénédicte; Kho, Richard; Thi Ha Chau, Tran; Singhal, Shweta; Gohier, Philippe; Clermont-Vignal, Catherine; Cheng, Ching-Yu; Jonas, Jost B.; Yu-Wai-Man, Patrick; Fraser, Clare L.; Chen, John J.; Ambika, Selvakumar; Miller, Neil R.; Liu, Yong; Newman, Nancy J.; Wong, Tien Y.; Biousse, Valérie (2020). "Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs". New England Journal of Medicine. 382 (18): 1687–1695. doi:10.1056/NEJMoa1917130. ISSN0028-4793.