Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Assistant Editor(s)-In-Chief: Kristin Feeney, B.S.
Sensitivity refers to the statistical measure of how well a binary classification test correctly identifies a condition[1]. In epidemiology, this is referred to as medical screening tests that detect preclinical disease. In quality control, this is referred to as a recall rate, whereby factories decided if a new product is at an acceptable level to be mass-produced and sold for distribution.
A sensitivity of 100% means that the test recognizes all sick people as such.
Sensitivity alone does not tell us how well the test predicts other classes (that is, about the negative cases). In the binary classification, as illustrated above, this is the corresponding specificity test, or equivalently, the sensitivity for the other classes.
Sensitivity is not the same as the positive predictive value (ratio of true positives to combined true and false positives), which is as much a statement about the proportion of actual positives in the population being tested as it is about the test.
The calculation of sensitivity does not take into account indeterminate test results. If a test cannot be repeated, the options are to exclude indeterminate samples from analyses (but the number of exclusions should be stated when quoting sensitivity), or, alternatively, indeterminate samples can be treated as false negatives (which gives the worst-case value for sensitivity and may therefore underestimate it).
SPPIN | SNNOUT | Neither | Near-perfect | |
---|---|---|---|---|
Proposed definition | Sp > 95% | SN > 95% | Both < 95% | Both > 99% |
Example | Many physical dx findings | Ottawa fracture rules[2] | Exercise treadmill test[3] | HIV-1/HIV-2 4th gen test[4] |
Predictive values: | ||||
10% pretest prob | PPV= 35%
NPV = 99% |
PPV = 64%
NPV = 98% |
PPV = 31%
NPV = 97% |
PPV = 92%
NPV > 99% |
50% pretest prob | PPV = 94%
NPV = 83% |
PPV = 83%
NPV = 94% |
PPV = 80%
NPV = 80% |
PPV = 99%
NPV = 99% |
90% pretest prob | PPV = 98%
NPV = 64% |
PPV = 99%
NPV = 35% |
PPV = 97%
NPV = 31% |
PPV > 99%
NPV = 92% |
Clinical messages | Accept test result when:
|
Accept test result when:
|
Accept test result unless:
| |
Notes: Green font indicates when results are more likely to be trustable |
In information retrieval, positive predictive value is called precision, and sensitivity is called recall.
F-measure: can be used as a single measure of performance of the test. The F-measure is the harmonic mean of precision and recall:
In the traditional language of statistical hypothesis testing, the sensitivity of a test is called the statistical power of the test, although the word power in that context has a more general usage that is not applicable in the present context. A sensitive test will have fewer Type II errors.