A social network is a social structure made of nodes (which are generally individuals or organizations) that are tied by one or more specific types of interdependency, such as values, visions, idea, financial exchange, friends, kinship, dislike, conflict, trade, web links, sexual relations, disease transmission (epidemiology), or airline routes.
Social network analysis views social relationships in terms of nodes and ties. Nodes are the individual actors within the networks, and ties are the relationships between the actors. There can be many kinds of ties between the nodes. Research in a number of academic fields has shown that social networks operate on many levels, from families up to the level of nations, and play a critical role in determining the way problems are solved, organizations are run, and the degree to which individuals succeed in achieving their goals.
In its simplest form, a social network is a map of all of the relevant ties between the nodes being studied. The network can also be used to determine the social capital of individual actors. These concepts are often displayed in a social network diagram, where nodes are the points and ties are the lines.
Social network analysis (related to network theory) has emerged as a key technique in modern sociology, anthropology, sociolinguistics, geography, social psychology, communication studies, information science, organizational studies, economics, and biology as well as a popular topic of speculation and study.
People have used the social network metaphor for over a century to connote complex sets of relationships between members of social systems at all scales, from interpersonal to international. Yet not until J. A. Barnes in 1954 did social scientists start using the term systematically to denote patterns of ties that cut across the concepts traditionally used by the public and social scientists: bounded groups (e.g., tribes, families) and social categories (e.g., gender, ethnicity). Scholars such as S.D. Berkowitz, Stephen Borgatti, Ronald Burt, Linton Freeman, Mark Granovetter, Nicholas Mullins, Anatol Rapoport, Stanley Wasserman, Barry Wellman and Harrison White expanded the use of social networks.
Social network analysis has now moved from being a suggestive metaphor to an analytic approach to a paradigm, with its own theoretical statements, methods and research tribes. Analysts reason from whole to part; from structure to relation to individual; from behavior to attitude. They either study whole networks, all of the ties containing specified relations in a defined population, or personal networks, the ties that specified people have, such as their "personal communities".
Several analytic tendencies distinguish social network analysis:
The shape of a social network helps determine a network's usefulness to its individuals. Smaller, tighter networks can be less useful to their members than networks with lots of loose connections (weak ties) to individuals outside the main network. More open networks, with many weak ties and social connections, are more likely to introduce new ideas and opportunities to their members than closed networks with many redundant ties. In other words, a group of friends who only do things with each other already share the same knowledge and opportunities. A group of individuals with connections to other social worlds is likely to have access to a wider range of information. It is better for individual success to have connections to a variety of networks rather than many connections within a single network. Similarly, individuals can exercise influence or act as brokers within their social networks by bridging two networks that are not directly linked (called filling structural holes).
The power of social network analysis stems from its difference from traditional social scientific studies, which assume that it is the attributes of individual actors -- whether they are friendly or unfriendly, smart or dumb, etc. -- that matter. Social network analysis produces an alternate view, where the attributes of individuals are less important than their relationships and ties with other actors within the network. This approach has turned out to be useful for explaining many real-world phenomena, but leaves less room for individual agency, the ability for individuals to influence their success, because so much of it rests within the structure of their network.
Social networks have also been used to examine how organizations interact with each other, characterizing the many informal connections that link executives together, as well as associations and connections between individual employees at different organizations. For example, power within organizations often comes more from the degree to which an individual within a network is at the center of many relationships than actual job title. Social networks also play a key role in hiring, in business success, and in job performance. Networks provide ways for companies to gather information, deter competition, and collude in setting prices or policies.
A summary of the progress of social networks and social network analysis has been written by Linton Freeman. His 2004 book, The Development of Social Network Analysis[1] is especially useful for developments until the 1980s.
Precursors of social networks in the late 1800s include Émile Durkheim and Ferdinand Tönnies. Tönnies argued that social groups can exist as personal and direct social ties that either link individuals who share values and belief (gemeinschaft) or impersonal, formal and instrumental social links (gesellschaft). Durkheim gave a non-individualistic explanation of social facts arguing that social phenomena arise when interacting individuals constitute a reality that can no longer be accounted for in terms of the properties of individual actors. He distinguished between a traditional society – "mechanical solidarity" – which prevails if individual differences are minimized, and the modern society – "organic solidarity" – that develops out of cooperation between differentiated individuals with independent roles.
Georg Simmel, writing at the turn of the twentieth century, was the first scholar to think directly in social network terms. His essays pointed to the nature of network size on interaction and to the likelihood of interaction in ramified, loosely-knit networks rather than groups (Simmel, 1908/1971).
After a hiatus in the first decades of the twentieth century, three main traditions in social networks appeared. In the 1930s, J.L. Moreno pioneered the systematic recording and analysis of social interaction in small groups, especially classrooms and work groups (sociometry), while a Harvard group led by W. Lloyd Warner and Elton Mayo explored interpersonal relations at work. In 1940, A.R. Radcliffe-Brown's presidential address to British anthropologists urged the systematic study of networks.[2] However, it took about 15 years before this call was followed-up systematically.
Social network analysis developed with the kinship studies of Elizabeth Bott in England in the 1950s and the 1950s-1960s urbanization studies of the University of Manchester group of anthropologists (centered around Max Gluckman and later J. Clyde Mitchell) investigating community networks in southern Africa, India and the United Kingdom. Concomittantly, British anthropologist S.F. Nadel codified a theory of social structure that was influential in later network analysis.[3]
In the 1960s-1970s, a growing number of scholars worked to combine the different tracks and traditions. One large group was centered around Harrison White and his students at Harvard University: Ivan Chase, Bonnie Erickson, Harriet Friedmann, Mark Granovetter, Nancy Howell, Joel Levine, Nicholas Mullins, John Padgett, Michael Schwartz and Barry Wellman. White's group thought of themselves as rebelling against the reigning structural-functionalist orthodoxy of then-dominant Harvard sociologist Talcott Parsons, leading them to devalue concerns with sybols, values, norms and culture. They also were opposed to the methodological individualism espoused by another Harvard sociologist, George Homans, which was endemic among the dominant survey researchers and positivists of the time. are among the former students of White who have developed social network analysis. [4]
White's was not the only group. Significant independent work was done by scholars elsewhere: University of California Irvine social scientists interested in mathematical applications, centered around Linton Freeman, including John Boyd, Susan Freeman, Kathryn Faust, A. Kimball Romney and Douglas White); quantitative analysts at the University of Chicago, including Joseph Galaskiewicz, Wendy Griswold, Edward Laumann, Peter Marsden, Martina Morris, and John Padgett; and communication scholars at Michigan State University, including Nan Lin and Everett Rogers. A substantively-oriented University of Toronto sociology group developed in the 1970s, centered on former students of Harrison White: S.D. Berkowitz, Harriet Friedmann, Nancy Leslie Howard, Nancy Howell, [[Lorne Tepperman and Barry Wellman, and also including noted modeler and game theorist Anatol Rapoport. [5]
The evolution of social networks can sometimes be modeled by the use of agent based models, providing insight into the interplay between communication rules, rumor spreading and social structure. Here is an interactive model of rumour spreading, based on rumour spreading from model on Cmol.
Diffusion of innovations theory explores social networks and their role in influencing the spread of new ideas and practices. Change agents and opinion leaders often play major roles in spurring the adoption of innovations, although factors inherent to the innovations also play a role.
Dunbar's number: The so-called rule of 150, asserts that the size of a genuine social network is limited to about 150 members. The rule arises from cross-cultural studies in sociology and especially anthropology of the maximum size of a village (in modern parlance most reasonably understood as an ecovillage). It is theorized in evolutionary psychology that the number may be some kind of limit of average human ability to recognize members and track emotional facts about all members of a group. However, it may be due to economics and the need to track "free riders", as it may be easier in larger groups to take advantage of the benefits of living in a community without contributing to those benefits.
Guanxi is a central concept in Chinese society that can be summarized as the use of personal influence. Guanxi can be studied from a social network approach.[6]
The small world phenomenon is the hypothesis that the chain of social acquaintances required to connect one arbitrary person to another arbitrary person anywhere in the world is generally short. The concept gave rise to the famous phrase six degrees of separation after a 1967 small world experiment by psychologist Stanley Milgram. In Milgram's experiment, a sample of US individuals were asked to reach a particular target person by passing a message along a chain of acquaintances. The average length of successful chains turned out to be about five intermediaries or six separation steps (the majority of chains in that study actually failed to complete). Academic researchers continue to explore this phenomenon. Judith Kleinfeld has written an article[7] that points out the many problems with the original Milgram research. A recent electronic Small World experiment[8] at Columbia University showed that about five to seven degrees of separation are sufficient for connecting any two people through e-mail.
The study of socio-technical systems is loosely linked to social network analysis, and looks at relations among individuals, institutions, objects and technologies.
The International Network for Social Network Analysis is the professional association of social network analysis. Started in 1977 by Barry Wellman at the University of Toronto, it now has more than 1200 members and until recently was headed by William Richards (Simon Fraser University).
Netwiki is a scientific wiki devoted to network theory, which uses tools from subjects such as graph theory, statistical mechanics, and dynamical systems to study real-world networks in the social sciences, technology, biology, etc.[10]
There are several journals: Social Networks, Connections, and the Journal of Social Structure.
Many social network tools for scholarly work are available online such as the long time standard UCINet [2], Pajek [3], ORA [4],or the "network" package in "R"). They are relatively easy to use to present graphical images of networks. Business oriented software is also available. Examples include InFlow[5], NetMiner [6]. An open source package for linux is Social Networks Visualizer or SocNetV [7]; a related package installer of SocNetV for Mac OS X [8] is available.
A systematic overview and comparison of a selection of software packages for social network analysis was provided by Huisman and Van Duijn (see references). A large list of software packages and libraries can be found under Computer Programs for Social Network Analysis.
bg:Социална мрежа da:Socialt netværk de:Soziales Netzwerk et:Sotsiaalne võrgustik id:Jaringan sosial it:Rete sociale he:חקר רשתות חברתיות hu:Ismeretségi hálózat nl:Sociaal netwerk simple:Social network sk:Sociálna sieť sr:Социјалне мреже uk:Соціальна мережа Template:WikiDoc Sources