Thyroid hormone receptor alpha | |
---|---|
Identifiers | |
Symbol | THRA |
Alt. symbols | THRA1, THRA2, ERBA1 |
Entrez | 7067 |
HUGO | 11796 |
OMIM | 190120 |
RefSeq | NM_199334 |
UniProt | P10827 |
Other data | |
Locus | Chr. 17 q11.2-17q12 |
Thyroid hormone receptor beta | |
---|---|
Identifiers | |
Symbol | THRB |
Alt. symbols | ERBA2 |
Entrez | 7068 |
HUGO | 11799 |
OMIM | 190160 |
RefSeq | NM_000461 |
UniProt | P10828 |
Other data | |
Locus | Chr. 3 p24.1-p22 |
The thyroid hormone receptor (TR)[1] is a type of nuclear receptor that is activated by binding thyroid hormone.[2]
Among the most important functions of thyroid hormone receptors are regulation of metabolism and heart rate.[3][4] In addition, they play critical roles in the development of organisms.[5]
Thyroid hormone receptors regulate gene expression by binding to hormone response elements (HREs) in DNA either as monomers, heterodimers with retinoid X receptor (RXR; which in turn is activated by binding to 9-cis-retinoic acid) or as homodimers. However TR/RXR heterodimers are the most transcriptionally active form of TR.[6]
In the absence of hormone, TR in complex with corepressor proteins bind to HREs in a transcriptionally inactive state. Binding of thyroid hormone results in a conformational change in TR which displaces corepressor from the receptor/DNA complex and recruitment of coactivator proteins. The DNA/TR/coactivator complex then recruits RNA polymerase that transcribes downstream DNA into messenger RNA and eventually protein that results in a change in cell function.
There are three forms of the thyroid hormone receptor designated alpha-1, beta-1 and beta-2 that are able to bind thyroid hormone. There are two TR-α receptor splice variants encoded by the THRA gene and two TR-β isoform splice variants encoded by the THRB gene:[2]
Certain mutations in the thyroid hormone receptor are associated with thyroid hormone resistance.[7]