Water intoxication risk factors

From Wikidoc - Reading time: 3 min

Water Intoxication Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Water Intoxication from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Water intoxication risk factors On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Water intoxication risk factors

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Water intoxication risk factors

CDC on Water intoxication risk factors

Water intoxication risk factors in the news

Blogs on Water intoxication risk factors

Directions to Hospitals Treating Water intoxication

Risk calculators and risk factors for Water intoxication risk factors

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Risk Factors[edit | edit source]

Low Body Mass (Infants)[edit | edit source]

It can be very easy for children under a year old to absorb too much water – especially if the child is under nine months old, because with their small body mass, it is easy to take in a large amount of water relative to body mass. It is also possible for a child to absorb too much water if submerged in it.[1]

Endurance Sports[edit | edit source]

Marathon runners are susceptible to water intoxication if they drink only water while running. Although sweat is relatively hypotonic compared with body fluids, marathon runners perspire heavily for long periods, potentially causing their sodium levels to drop when they consume large amounts of fluids to quench their thirst. The replacement fluids may not contain sufficient sodium to replace what has been lost, and this puts them at high risk for water intoxication. Medical personnel at marathon events are trained to immediately suspect water intoxication when runners collapse or show signs of confusion. Properly designed electrolyte-replacement drinks and some sports drinks include electrolytes that make them roughly isotonic with sweat, which helps to prevent water intoxication.

Note that overconsumption of sodium (in drinks or also in food), as well as inadequate intake of water, can cause hypernatremia, a disorder that is nearly the opposite of water intoxication and equally dangerous. Improper use of salt tablets can cause hypernatremia also.

Overexertion and Heat Stress[edit | edit source]

Any activity or situation that promotes heavy sweating can lead to water intoxication when water is consumed to replace lost fluids. Persons working in extreme heat and/or humidity for long periods must take care to drink and eat in ways that help to maintain electrolyte balance. Persons using drugs such as MDMA ("Ecstasy") may overexert themselves, perspire heavily, and then drink large amounts of water to rehydrate, leading to electrolyte imbalance and water intoxication (See the case of Leah Betts). Even people who are resting quietly in extreme heat or humidity may run the risk of water intoxication if they drink large amounts of water over short periods for rehydration.

Psychiatric Conditions[edit | edit source]

Psychogenic polydipsia is the psychiatric condition in which patients feel compelled to drink large quantities of water, thus putting them at risk of water intoxication. This condition can be especially dangerous if the patient also exhibits other psychiatric indications (as is often the case), as his or her care-takers might misinterpret the hyponatraemic symptoms.

Specific Disease[edit | edit source]

Diarrhea and vomiting can result in very large electrolyte losses, and although drinking water will replace lost water, the lost electrolytes may not be adequately replaced, which can result in water intoxication. Replacement fluids for vomiting and diarrhea should be properly balanced to make them isotonic with the fluids lost in these conditions. Special formulations exist for oral rehydration therapy in these cases.

A great many disorders can affect electrolyte balance, especially disorders of the kidneys. Diuretic therapy, mineralocorticoid deficiency, osmotic diuresis (as in the hyperglycemia of uncontrolled diabetes), and the multiple disorders associated with AIDS are other common causes of electrolyte imbalance, although they do not always produce water intoxication.

Iatrogenic[edit | edit source]

When an unconscious person is being fed intravenously (for example, total parenteral nutrition or via a nasogastric tube) the fluids given must be carefully balanced in composition to match fluids and electrolytes lost. These fluids are typically hypertonic, and so water is often co-administered. If the electrolytes are not monitored (even in an ambulatory patient) either hypernatremia or hyponatremia may result.

Some neurologic/psychiatric medications (Trileptal, among others) have been found to cause hyponatremia in some patients. Patients with diabetes insipidus are particularly vulnerable due to rapid fluid processing.

References[edit | edit source]



Template:WS


Licensed under CC BY-SA 3.0 | Source: https://www.wikidoc.org/index.php/Water_intoxication_risk_factors
5 views | Status: cached on October 05 2024 07:25:17
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF