This article needs additional citations for verification. (May 2016) |
| ||||
---|---|---|---|---|
Cardinal | three hundred | |||
Ordinal | 300th (three hundredth) | |||
Factorization | 22 × 3 × 52 | |||
Greek numeral | Τ´ | |||
Roman numeral | CCC | |||
Binary | 1001011002 | |||
Ternary | 1020103 | |||
Senary | 12206 | |||
Octal | 4548 | |||
Duodecimal | 21012 | |||
Hexadecimal | 12C16 | |||
Hebrew | ש | |||
Armenian | Յ | |||
Babylonian cuneiform | 𒐙 | |||
Egyptian hieroglyph | 𓍤 |
300 (three hundred) is the natural number following 299 and preceding 301.
300 is a composite number.
315 = 32 × 5 × 7 = , rencontres number, highly composite odd number, having 12 divisors.[1]
316 = 22 × 79, a centered triangular number[2] and a centered heptagonal number.[3]
317 is a prime number, Eisenstein prime with no imaginary part, Chen prime,[4] one of the rare primes to be both right and left-truncatable,[5] and a strictly non-palindromic number.
317 is the exponent (and number of ones) in the fourth base-10 repunit prime.[6]
319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109), Smith number,[7] cannot be represented as the sum of fewer than 19 fourth powers, happy number in base 10[8]
320 = 26 × 5 = (25) × (2 × 5). 320 is a Leyland number,[9] and maximum determinant of a 10 by 10 matrix of zeros and ones.
321 = 3 × 107, a Delannoy number[10]
322 = 2 × 7 × 23. 322 is a sphenic,[11] nontotient, untouchable,[12] and a Lucas number.[13] It is also the first unprimeable number to end in 2.
323 = 17 × 19. 323 is the sum of nine consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), the sum of the 13 consecutive primes (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), Motzkin number.[14] A Lucas and Fibonacci pseudoprime. See 323 (disambiguation)
324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[15] and an untouchable number.[12]
325 = 52 × 13. 325 is a triangular number, hexagonal number,[16] nonagonal number,[17] and a centered nonagonal number.[18] 325 is the smallest number to be the sum of two squares in 3 different ways: 12 + 182, 62 + 172 and 102 + 152. 325 is also the smallest (and only known) 3-hyperperfect number.[19][20]
326 = 2 × 163. 326 is a nontotient, noncototient,[21] and an untouchable number.[12] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number[22]
327 = 3 × 109. 327 is a perfect totient number,[23] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[24]
328 = 23 × 41. 328 is a refactorable number,[25] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).
329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and a highly cototient number.[26]
330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67), pentatope number (and hence a binomial coefficient ), a pentagonal number,[27] divisible by the number of primes below it, and a sparsely totient number.[28]
331 is a prime number, super-prime, cuban prime,[29] a lucky prime,[30] sum of five consecutive primes (59 + 61 + 67 + 71 + 73), centered pentagonal number,[31] centered hexagonal number,[32] and Mertens function returns 0.[33]
332 = 22 × 83, Mertens function returns 0.[33]
333 = 32 × 37, Mertens function returns 0;[33] repdigit; 2333 is the smallest power of two greater than a googol.
334 = 2 × 167, nontotient.[34]
335 = 5 × 67. 335 is divisible by the number of primes below it, number of Lyndon words of length 12.
336 = 24 × 3 × 7, untouchable number,[12] number of partitions of 41 into prime parts,[35] largely composite number.[36]
337, prime number, emirp, permutable prime with 373 and 733, Chen prime,[4] star number
338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[37]
339 = 3 × 113, Ulam number[38]
340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of 4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.[21] Number of regions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequence A331452 in the OEIS) and (sequence A255011 in the OEIS).
341 = 11 × 31, sum of seven consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61), octagonal number,[39] centered cube number,[40] super-Poulet number. 341 is the smallest Fermat pseudoprime; it is the least composite odd modulus m greater than the base b, that satisfies the Fermat property "bm−1 − 1 is divisible by m", for bases up to 128 of b = 2, 15, 60, 63, 78, and 108.
342 = 2 × 32 × 19, pronic number,[41] Untouchable number.[12]
343 = 73, the first nice Friedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.
344 = 23 × 43, octahedral number,[42] noncototient,[21] totient sum of the first 33 integers, refactorable number.[25]
345 = 3 × 5 × 23, sphenic number,[11] idoneal number
346 = 2 × 173, Smith number,[7] noncototient.[21]
347 is a prime number, emirp, safe prime,[43] Eisenstein prime with no imaginary part, Chen prime,[4] Friedman prime since 347 = 73 + 4, twin prime with 349, and a strictly non-palindromic number.
348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97), refactorable number.[25]
349, prime number, twin prime, lucky prime, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[44]
350 = 2 × 52 × 7 = , primitive semiperfect number,[45] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.
351 = 33 × 13, triangular number, sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member of Padovan sequence[46] and number of compositions of 15 into distinct parts.[47]
352 = 25 × 11, the number of n-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number[22]
354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,[48][49] sphenic number,[11] nontotient, also SMTP code meaning start of mail input. It is also sum of absolute value of the coefficients of Conway's polynomial.
355 = 5 × 71, Smith number,[7] Mertens function returns 0,[33] divisible by the number of primes below it.[50] The cototient of 355 is 75,[51] where 75 is the product of its digits (3 x 5 x 5 = 75).
The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known as Milü and provides an extremely accurate approximation for pi, being accurate to seven digits.
356 = 22 × 89, Mertens function returns 0.[33]
357 = 3 × 7 × 17, sphenic number.[11]
358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[33] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[52]
361 = 192. 361 is a centered triangular number,[2] centered octagonal number, centered decagonal number,[53] member of the Mian–Chowla sequence;[54] also the number of positions on a standard 19 x 19 Go board.
362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,[55] Mertens function returns 0,[33] nontotient, noncototient.[21]
364 = 22 × 7 × 13, tetrahedral number,[56] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[33] nontotient. It is a repdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zero tetrahedral number.[56]
366 = 2 × 3 × 61, sphenic number,[11] Mertens function returns 0,[33] noncototient,[21] number of complete partitions of 20,[57] 26-gonal and 123-gonal. Also the number of days in a leap year.
367 is a prime number, a lucky prime,[30] Perrin number,[58] happy number, prime index prime and a strictly non-palindromic number.
368 = 24 × 23. It is also a Leyland number.[9]
370 = 2 × 5 × 37, sphenic number,[11] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted, Base 10 Armstrong number since 33 + 73 + 03 = 370.
371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor,[59] the next such composite number is 2935561623745, Armstrong number since 33 + 73 + 13 = 371.
372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), noncototient,[21] untouchable number,[12] --> refactorable number.[25]
373, prime number, balanced prime,[60] one of the rare primes to be both right and left-truncatable (two-sided prime),[5] sum of five consecutive primes (67 + 71 + 73 + 79 + 83), sexy prime with 367 and 379, permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.
374 = 2 × 11 × 17, sphenic number,[11] nontotient, 3744 + 1 is prime.[61]
375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.[62]
376 = 23 × 47, pentagonal number,[27] 1-automorphic number,[63] nontotient, refactorable number.[25] There is a math puzzle in which when 376 is squared, 376 is also the last three digits, as 376 * 376 = 141376 [64] It is one of the two three-digit numbers where when squared, the last three digits remain the same.
377 = 13 × 29, Fibonacci number, a centered octahedral number,[65] a Lucas and Fibonacci pseudoprime, the sum of the squares of the first six primes.
378 = 2 × 33 × 7, triangular number, cake number, hexagonal number,[16] Smith number.[7]
379 is a prime number, Chen prime,[4] lazy caterer number[22] and a happy number in base 10. It is the sum of the first 15 odd primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.
380 = 22 × 5 × 19, pronic number,[41] number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.[66]
381 = 3 × 127, palindromic in base 2 and base 8.
381 is the sum of the first 16 prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).
382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[7]
383, prime number, safe prime,[43] Woodall prime,[67] Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[68] 4383 - 3383 is prime.
385 = 5 × 7 × 11, sphenic number,[11] square pyramidal number,[69] the number of integer partitions of 18.
385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12
386 = 2 × 193, nontotient, noncototient,[21] centered heptagonal number,[3] number of surface points on a cube with edge-length 9.[70]
387 = 32 × 43, number of graphical partitions of 22.[71]
388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[72] number of uniform rooted trees with 10 nodes.[73]
389, prime number, emirp, Eisenstein prime with no imaginary part, Chen prime,[4] highly cototient number,[26] strictly non-palindromic number. Smallest conductor of a rank 2 Elliptic curve.
390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,
391 = 17 × 23, Smith number,[7] centered pentagonal number.[31]
392 = 23 × 72, Achilles number.
393 = 3 × 131, Blum integer, Mertens function returns 0.[33]
394 = 2 × 197 = S5 a Schröder number,[75] nontotient, noncototient.[21]
395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[76]
396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[25] Harshad number, digit-reassembly number.
397, prime number, cuban prime,[29] centered hexagonal number.[32]
398 = 2 × 199, nontotient.
399 = 3 × 7 × 19, sphenic number,[11] smallest Lucas–Carmichael number, and a Leyland number of the second kind[77] (). 399! + 1 is prime.