Analytica is a visual software developed by Lumina Decision Systems for creating, analyzing and communicating quantitative decision models.[1] It combines hierarchical influence diagrams for visual creation and view of models, intelligent arrays for working with multidimensional data, Monte Carlo simulation for analyzing risk and uncertainty, and optimization, including linear and nonlinear programming. Its design is based on ideas from the field of decision analysis. As a computer language, it combines a declarative (non-procedural) structure for referential transparency, array abstraction, and automatic dependency maintenance for efficient sequencing of computation.
Analytica models are organized as influence diagrams. Variables (and other objects) appear as nodes of various shapes on a diagram, connected by arrows that provide a visual representation of dependencies. Analytica influence diagrams may be hierarchical, in which a single module node on a diagram represents an entire sub-model.
Hierarchical influence diagrams in Analytica serve as an organizational tool. Because the visual layout of an influence diagram matches these natural human abilities both spatially and in the level of abstraction, people are able to take in more information about a model's structure and organization at a glance than is possible with less visual paradigms, such as Spreadsheets and Mathematical expressions. Managing the structure and organization of a large model can be a significant part of the modeling process, but is substantially aided by the visualization of influence diagrams.
Influence diagrams also serve as a tool for communication. Once a quantitative model has been created and its final results computed, it is often the case that an understanding of how the results are obtained, and how various assumptions impact the results, is far more important than the specific numbers computed. Analytica gives users the ability to help target audiences understand these aspects within their models. The visual representation of an influence diagram quickly communicates an understanding at a level of abstraction that is normally more appropriate than detailed representations such as mathematical expressions or cell formulas. When more detail is desired, users can drill down to increasing levels of detail, speeded by the visual depiction of the model's structure.
The existence of an easily understandable and transparent model supports communication and debate within an organization, and this effect is one of the primary benefits of quantitative model building. When all interested parties are able to understand a common model structure, debates and discussions will often focus more directly on specific assumptions, can cut down on "cross-talk", and therefore lead to more productive interactions within the organization. The influence diagram serves as a graphical representation that can help to make models accessible to people at different levels.
Analytica uses index objects to track the dimensions of multidimensional arrays. An index object has a name and a list of elements. When two multidimensional values are combined, for example in an expression such as
Profit = Revenue − Expenses
where Revenue and Expenses are each multidimensional, Analytica repeats the profit calculation over each dimension, but recognizes when same dimension occurs in both values and treats it as the same dimension during the calculation, in a process called intelligent array abstraction. Unlike most programming languages, there is no inherent ordering to the dimensions in a multidimensional array. This avoids duplicated formulas and explicit FOR loops, both common sources of modeling errors. The simplified expressions made possible by intelligent array abstraction allow the model to be more accessible, interpretable, and transparent.
Another consequence of intelligent array abstraction is that new dimensions can be introduced or removed from an existing model, without requiring changes to the model structure or changes to variable definitions. For example, while creating a model, the model builder might assume a particular variable, for example Discounted rate, contains a single number. Later, after constructing a model, a user might replace the single number with a table of numbers, perhaps Discount rate broken down by Country and by Economic scenario. These new divisions may reflect the fact that the effective discount rate is not the same for international divisions of a company, and that different rates are applicable to different hypothetical scenarios. Analytica automatically propagates these new dimensions to any results that depend upon Discount rate, so for example, the result for Net present value will become multidimensional and contain these new dimensions. In essence, Analytica repeats the same calculation using the discount rate for each possible combination of Country and Economic scenario.
This flexibility is important when exploring computation tradeoffs between the level of detail, computation time, available data, and overall size or dimensionality of parametric spaces. Such adjustments are common after models have been fully constructed as a way of exploring what-if scenarios and overall relationships between variables.
Incorporating uncertainty into model outputs helps to provide more realistic and informative projections. Uncertain quantities in Analytica can be specified using a distribution function. When evaluated, distributions are sampled using either Latin hypercube, Monte Carlo, or Sobol sampling, then the samples are propagated through the computations to the results. The sampled result distribution and summary statistics can then be viewed directly (mean, Fractile bands, probability density function (PDF), cumulative distribution function (CDF)), Analytica supports collaborative decision analysis and probability management through the use of the SIP Math(tm) standard.[2][3]
System dynamics is an approach to simulating the behavior of complex systems over time. It deals with feedback loops and time delays on the behavior of the entire system. The Dynamic() function in Analytica allows definition of variables with cyclic dependencies, such as feedback loops. It expands the influence diagram notation, which does not normally allow cycles. At least one link in each cycle includes a time lag, depicted as a gray influence arrow to distinguish it from standard black arrows without time lags.
Analytica includes a general language of operators and functions for expressing mathematical relationships among variables. Users can define functions and libraries to extend the language.
Analytica has several features as a programming language designed to make it easy to use for quantitative modeling:
It is a declarative language, meaning that a model declares a definition for each variable without specifying an execution sequence as required by conventional imperative languages. Analytica determines a correct and efficient execution sequence using the dependency graph.
The Analytica software runs on Microsoft Windows operating systems. Analytica Free Edition is available for an unlimited time and lets you build models of up to 101 user objects. Analytica Professional, Enterprise, Optimizer are desktop editions with increasing levels of functionality. The Analytica Cloud Platform lets users share models via a server and run them via a web browser. Analytica 6.4 was released in 2023.
Analytica's predecessor, called Demos,[79] grew from the research on tools for policy analysis by Max Henrion as a PhD student and later professor at Carnegie Mellon University between 1979 and 1990. Henrion founded Lumina Decision Systems in 1991 with Brian Arnold. Lumina continued to develop the software and apply it to environmental and public policy analysis applications. Lumina first released Analytica as a product in 1996.
^Davis Bu, Eric Pan, Janice Walker, Julia Adler-Milstein, David Kendrick, Julie M. Hook, Caitlin M. Cusack, David W. Bates, and Blackford Middleton (2007), Benefits of Information Technology–Enabled Diabetes Management, Diabetes Care 30:1137–1142, American Diabetes Association.
^Montville, Rebecca; Chen, Yuhuan; Schaffner, Donald W. (2002). "Risk assessment of hand washing efficacy using literature and experimental data". International Journal of Food Microbiology. 73 (2–3): 305–313. doi:10.1016/S0168-1605(01)00666-3. PMID11934038.
^DC Kendrick, D Bu, E Pan, B Middleton (2007), Crossing the Evidence Chasm: Building Evidence Bridges from Process Changes to Clinical Outcomes, Journal of the American Medical Informatics Association, Elsevier.
^Sinha, R.; Small, M. J.; Ryan, P. F.; Sullivan, T. J.; Cosby, B. J. (1998). "Reduced-Form Modelling of Surface Water and Soil Chemistry for the Tracking and Analysis Framework". Water, Air, and Soil Pollution. 105 (3/4): 617–642. Bibcode:1998WASP..105..617S. doi:10.1023/A:1004993425759. S2CID92758035.
^Basson, L.; Petrie, J.G. (2007). "An integrated approach for the consideration of uncertainty in decision making supported by Life Cycle Assessment". Environmental Modelling & Software. 22 (2): 167–176. Bibcode:2007EnvMS..22..167B. doi:10.1016/j.envsoft.2005.07.026.
^Matthew F. Bingham, Zhimin Li, Kristy E. Mathews, Colleen M. Spagnardi, Jennifer S. Whaley, Sara G. Veale and Jason C. Kinnell (2011), An Application of Behavioral Modeling to Characterize Urban Angling Decisions and Values, North American Journal of Fisheries Management 31:257–268.
^O'Ryan R., Diaz M. (2008), The Use of Probabilistic Analysis to Improve Decision-Making in Environmental Regulation in a Developing Context: The Case of Arsenic Regulation in Chile, Human and Ecological Risk Assessment, Vol 14, Issue 3, pg: 623–640.
^Andrew Gronewold and Mark Borsuk, "A probabilistic modeling tool for assessing water quality standard compliance", submitted to EMS Oct 2008.
^Borsuk, Mark E.; Reichert, Peter; Peter, Armin; Schager, Eva; Burkhardt-Holm, Patricia (2006). "Assessing the decline of brown trout (Salmo trutta) in Swiss rivers using a Bayesian probability network". Ecological Modelling. 192 (1–2): 224–244. Bibcode:2006EcMod.192..224B. doi:10.1016/j.ecolmodel.2005.07.006.
^Borsuk, Mark E.; Stow, Craig A.; Reckhow, Kenneth H. (2004). "A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis". Ecological Modelling. 173 (2–3): 219–239. Bibcode:2004EcMod.173..219B. doi:10.1016/j.ecolmodel.2003.08.020.
^Rasmussen, S.K.J; Ross, T.; Olley, J.; McMeekin, T. (2002). "A process risk model for the shelf life of Atlantic salmon fillets". International Journal of Food Microbiology. 73 (1): 47–60. doi:10.1016/S0168-1605(01)00687-0. PMID11885573.
^Senbel, Maged; McDaniels, Timothy; Dowlatabadi, Hadi (2003). "The ecological footprint: A non-monetary metric of human consumption applied to North America". Global Environmental Change. 13 (2): 83–100. Bibcode:2003GEC....13...83S. doi:10.1016/S0959-3780(03)00009-8.
^Dowlatabadi, H. (1998). Sensitivity of Climate Change Mitigation Estimates to Assumptions About Technical Change. Energy Economics 20: 473–93.
^West, J. J. and H. Dowlatabadi (1998). On assessing the economic impacts of sea level rise on developed coasts. Climate, change and risk. London, Routledge. 205–20.
^Leiss, W., H. Dowlatabadi, and Greg Paoli (2001). Who's Afraid of Climate Change? A guide for the perplexed. Isuma 2(4): 95–103.
^Morgan, M. G., M. Kandlikar, J. Risbey and H. Dowlatabadi (1999). Why conventional tools for policy analysis are often inadequate for problems of global change. Climatic Change 41: 271–81.
^Casman, E. A., M. G. Morgan and H. Dowlatabadi (1999). Mixed Levels of Uncertainty in Complex Policy Models. Risk Analysis 19(1): 33–42.
^Dowlatabadi, H. (2003). Scale and Scope In Integrated Assessment: lessons from ten years with ICAM. Scaling in Integrated Assessment. J. Rotmans and D. S. Rothman. Lisse, Swetz & Zeitlinger: 55–72.
^Dowlatabadi, H. (2000). Bumping against a gas ceiling. Climatic Change 46(3): 391–407.
^Morgan, M. G. and H. Dowlatabadi (1996). Learning From Integrated Assessment of Climate Change. Climatic Change 34: 337–368.
^Henry Heimeier (1996), A New Paradigm For Modeling The Precision Strike Process, published in MILCOM96.
^Russell F. Richards, Henry A. Neimeier, W. L. Hamm, and D. L. Alexander,
"Analytical Modeling in Support of C4ISR Mission Assessment (CMA)," Third International Symposium on Command and Control Research and Technology, National Defense University, Fort McNair, Washington, DC, June 17–20, 1997, pp. 626–639.
^Henry Neimeier and C. McGowan (1996), "Analyzing Processes with HANQ", Proceedings of the International Council on Systems Engineering '96.
^Kenneth P. Kuskey and Susan K. Parker (2000), "The Architecture of CAPE Models", MITRE technical paper. See Abstract.
^Henry Neimeier (1994), "Analytic Queuing Network", Conference Proceedings of the 12th International Conference on the System Dynamics Society, in Stirling, Scotland.
^Rahul Tongia, "Can broadband over powerline carrier (PLC) compete?". The author uses Analytica to model the economic viability of the introduction of a PLC service.
^Promises and False Promises of PowerLine Carrier (PLC) Broadband Communications – A Techno-Economic Analysis"Archived copy"(PDF). Archived from the original(PDF) on 2007-02-11. Retrieved 2011-07-08.{{cite web}}: CS1 maint: archived copy as title (link)