Function whose domain is the positive integers
In number theory , an arithmetic , arithmetical , or number-theoretic function [ 1] [ 2] is generally any function f (n ) whose domain is the positive integers and whose range is a subset of the complex numbers .[ 3] [ 4] [ 5] Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n ".[ 6] There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions . This article provides links to functions of both classes.
An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n .
Arithmetic functions are often extremely irregular (see table ), but some of them have series expansions in terms of Ramanujan's sum .
Multiplicative and additive functions [ edit ]
An arithmetic function a is
Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them.
Then an arithmetic function a is
additive if a (mn ) = a (m ) + a (n ) for all coprime natural numbers m and n ;
multiplicative if a (mn ) = a (m )a (n ) for all coprime natural numbers m and n .
In this article,
∑
p
f
(
p
)
{\textstyle \sum _{p}f(p)}
and
∏
p
f
(
p
)
{\textstyle \prod _{p}f(p)}
mean that the sum or product is over all prime numbers :
∑
p
f
(
p
)
=
f
(
2
)
+
f
(
3
)
+
f
(
5
)
+
⋯
{\displaystyle \sum _{p}f(p)=f(2)+f(3)+f(5)+\cdots }
and
∏
p
f
(
p
)
=
f
(
2
)
f
(
3
)
f
(
5
)
⋯
.
{\displaystyle \prod _{p}f(p)=f(2)f(3)f(5)\cdots .}
Similarly,
∑
p
k
f
(
p
k
)
{\textstyle \sum _{p^{k}}f(p^{k})}
and
∏
p
k
f
(
p
k
)
{\textstyle \prod _{p^{k}}f(p^{k})}
mean that the sum or product is over all prime powers with strictly positive exponent (so k = 0 is not included):
∑
p
k
f
(
p
k
)
=
∑
p
∑
k
>
0
f
(
p
k
)
=
f
(
2
)
+
f
(
3
)
+
f
(
4
)
+
f
(
5
)
+
f
(
7
)
+
f
(
8
)
+
f
(
9
)
+
⋯
.
{\displaystyle \sum _{p^{k}}f(p^{k})=\sum _{p}\sum _{k>0}f(p^{k})=f(2)+f(3)+f(4)+f(5)+f(7)+f(8)+f(9)+\cdots .}
The notations
∑
d
∣
n
f
(
d
)
{\textstyle \sum _{d\mid n}f(d)}
and
∏
d
∣
n
f
(
d
)
{\textstyle \prod _{d\mid n}f(d)}
mean that the sum or product is over all positive divisors of n , including 1 and n . For example, if n = 12 , then
∏
d
∣
12
f
(
d
)
=
f
(
1
)
f
(
2
)
f
(
3
)
f
(
4
)
f
(
6
)
f
(
12
)
.
{\displaystyle \prod _{d\mid 12}f(d)=f(1)f(2)f(3)f(4)f(6)f(12).}
The notations can be combined:
∑
p
∣
n
f
(
p
)
{\textstyle \sum _{p\mid n}f(p)}
and
∏
p
∣
n
f
(
p
)
{\textstyle \prod _{p\mid n}f(p)}
mean that the sum or product is over all prime divisors of n . For example, if n = 18, then
∑
p
∣
18
f
(
p
)
=
f
(
2
)
+
f
(
3
)
,
{\displaystyle \sum _{p\mid 18}f(p)=f(2)+f(3),}
and similarly
∑
p
k
∣
n
f
(
p
k
)
{\textstyle \sum _{p^{k}\mid n}f(p^{k})}
and
∏
p
k
∣
n
f
(
p
k
)
{\textstyle \prod _{p^{k}\mid n}f(p^{k})}
mean that the sum or product is over all prime powers dividing n . For example, if n = 24, then
∏
p
k
∣
24
f
(
p
k
)
=
f
(
2
)
f
(
3
)
f
(
4
)
f
(
8
)
.
{\displaystyle \prod _{p^{k}\mid 24}f(p^{k})=f(2)f(3)f(4)f(8).}
Ω(n ), ω (n ), ν p (n ) – prime power decomposition[ edit ]
The fundamental theorem of arithmetic states that any positive integer n can be represented uniquely as a product of powers of primes:
n
=
p
1
a
1
⋯
p
k
a
k
{\displaystyle n=p_{1}^{a_{1}}\cdots p_{k}^{a_{k}}}
where p 1 < p 2 < ... < p k are primes and the aj are positive integers. (1 is given by the empty product.)
It is often convenient to write this as an infinite product over all the primes, where all but a finite number have a zero exponent. Define the p -adic valuation νp (n ) to be the exponent of the highest power of the prime p that divides n . That is, if p is one of the p i then ν p (n ) = a i , otherwise it is zero. Then
n
=
∏
p
p
ν
p
(
n
)
.
{\displaystyle n=\prod _{p}p^{\nu _{p}(n)}.}
In terms of the above the prime omega functions ω and Ω are defined by
ω (n ) = k ,
Ω(n ) = a 1 + a 2 + ... + a k .
To avoid repetition, whenever possible formulas for the functions listed in this article are given in terms of n and the corresponding p i , a i , ω, and Ω.
Multiplicative functions [ edit ]
σk (n ), τ(n ), d (n ) – divisor sums[ edit ]
σk (n ) is the sum of the k th powers of the positive divisors of n , including 1 and n , where k is a complex number.
σ1 (n ) , the sum of the (positive) divisors of n , is usually denoted by σ(n ) .
Since a positive number to the zero power is one, σ0 (n ) is therefore the number of (positive) divisors of n ; it is usually denoted by d (n ) or τ(n ) (for the German Teiler = divisors).
σ
k
(
n
)
=
∏
i
=
1
ω
(
n
)
p
i
(
a
i
+
1
)
k
−
1
p
i
k
−
1
=
∏
i
=
1
ω
(
n
)
(
1
+
p
i
k
+
p
i
2
k
+
⋯
+
p
i
a
i
k
)
.
{\displaystyle \sigma _{k}(n)=\prod _{i=1}^{\omega (n)}{\frac {p_{i}^{(a_{i}+1)k}-1}{p_{i}^{k}-1}}=\prod _{i=1}^{\omega (n)}\left(1+p_{i}^{k}+p_{i}^{2k}+\cdots +p_{i}^{a_{i}k}\right).}
Setting k = 0 in the second product gives
τ
(
n
)
=
d
(
n
)
=
(
1
+
a
1
)
(
1
+
a
2
)
⋯
(
1
+
a
ω
(
n
)
)
.
{\displaystyle \tau (n)=d(n)=(1+a_{1})(1+a_{2})\cdots (1+a_{\omega (n)}).}
φ(n ) – Euler totient function[ edit ]
φ(n ) , the Euler totient function, is the number of positive integers not greater than n that are coprime to n .
φ
(
n
)
=
n
∏
p
∣
n
(
1
−
1
p
)
=
n
(
p
1
−
1
p
1
)
(
p
2
−
1
p
2
)
⋯
(
p
ω
(
n
)
−
1
p
ω
(
n
)
)
.
{\displaystyle \varphi (n)=n\prod _{p\mid n}\left(1-{\frac {1}{p}}\right)=n\left({\frac {p_{1}-1}{p_{1}}}\right)\left({\frac {p_{2}-1}{p_{2}}}\right)\cdots \left({\frac {p_{\omega (n)}-1}{p_{\omega (n)}}}\right).}
Jk (n ) – Jordan totient function[ edit ]
Jk (n ) , the Jordan totient function, is the number of k -tuples of positive integers all less than or equal to n that form a coprime (k + 1)-tuple together with n . It is a generalization of Euler's totient, φ(n ) = J1 (n ) .
J
k
(
n
)
=
n
k
∏
p
∣
n
(
1
−
1
p
k
)
=
n
k
(
p
1
k
−
1
p
1
k
)
(
p
2
k
−
1
p
2
k
)
⋯
(
p
ω
(
n
)
k
−
1
p
ω
(
n
)
k
)
.
{\displaystyle J_{k}(n)=n^{k}\prod _{p\mid n}\left(1-{\frac {1}{p^{k}}}\right)=n^{k}\left({\frac {p_{1}^{k}-1}{p_{1}^{k}}}\right)\left({\frac {p_{2}^{k}-1}{p_{2}^{k}}}\right)\cdots \left({\frac {p_{\omega (n)}^{k}-1}{p_{\omega (n)}^{k}}}\right).}
μ(n ) – Möbius function[ edit ]
μ(n ) , the Möbius function, is important because of the Möbius inversion formula. See Dirichlet convolution , below.
μ
(
n
)
=
{
(
−
1
)
ω
(
n
)
=
(
−
1
)
Ω
(
n
)
if
ω
(
n
)
=
Ω
(
n
)
0
if
ω
(
n
)
≠
Ω
(
n
)
.
{\displaystyle \mu (n)={\begin{cases}(-1)^{\omega (n)}=(-1)^{\Omega (n)}&{\text{if }}\;\omega (n)=\Omega (n)\\0&{\text{if }}\;\omega (n)\neq \Omega (n).\end{cases}}}
This implies that μ(1) = 1. (Because Ω(1) = ω(1) = 0.)
τ(n ) – Ramanujan tau function[ edit ]
τ(n ) , the Ramanujan tau function, is defined by its generating function identity:
∑
n
≥
1
τ
(
n
)
q
n
=
q
∏
n
≥
1
(
1
−
q
n
)
24
.
{\displaystyle \sum _{n\geq 1}\tau (n)q^{n}=q\prod _{n\geq 1}(1-q^{n})^{24}.}
Although it is hard to say exactly what "arithmetical property of n " it "expresses",[ 7] (τ (n ) is (2π)−12 times the n th Fourier coefficient in the q-expansion of the modular discriminant function)[ 8] it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain σk (n ) and r k (n ) functions (because these are also coefficients in the expansion of modular forms ).
c q (n ) – Ramanujan's sum[ edit ]
c q (n ) , Ramanujan's sum, is the sum of the n th powers of the primitive q th roots of unity :
c
q
(
n
)
=
∑
gcd
(
a
,
q
)
=
1
1
≤
a
≤
q
e
2
π
i
a
q
n
.
{\displaystyle c_{q}(n)=\sum _{\stackrel {1\leq a\leq q}{\gcd(a,q)=1}}e^{2\pi i{\tfrac {a}{q}}n}.}
Even though it is defined as a sum of complex numbers (irrational for most values of q ), it is an integer. For a fixed value of n it is multiplicative in q :
If q and r are coprime , then
c
q
(
n
)
c
r
(
n
)
=
c
q
r
(
n
)
.
{\displaystyle c_{q}(n)c_{r}(n)=c_{qr}(n).}
ψ (n ) - Dedekind psi function[ edit ]
The Dedekind psi function , used in the theory of modular functions , is defined by the formula
ψ
(
n
)
=
n
∏
p
|
n
(
1
+
1
p
)
.
{\displaystyle \psi (n)=n\prod _{p|n}\left(1+{\frac {1}{p}}\right).}
Completely multiplicative functions [ edit ]
λ(n ) – Liouville function[ edit ]
λ (n ) , the Liouville function, is defined by
λ
(
n
)
=
(
−
1
)
Ω
(
n
)
.
{\displaystyle \lambda (n)=(-1)^{\Omega (n)}.}
All Dirichlet characters χ (n ) are completely multiplicative. Two characters have special notations:
The principal character (mod n ) is denoted by χ 0 (a ) (or χ 1 (a )). It is defined as
χ
0
(
a
)
=
{
1
if
gcd
(
a
,
n
)
=
1
,
0
if
gcd
(
a
,
n
)
≠
1.
{\displaystyle \chi _{0}(a)={\begin{cases}1&{\text{if }}\gcd(a,n)=1,\\0&{\text{if }}\gcd(a,n)\neq 1.\end{cases}}}
The quadratic character (mod n ) is denoted by the Jacobi symbol for odd n (it is not defined for even n ):
(
a
n
)
=
(
a
p
1
)
a
1
(
a
p
2
)
a
2
⋯
(
a
p
ω
(
n
)
)
a
ω
(
n
)
.
{\displaystyle \left({\frac {a}{n}}\right)=\left({\frac {a}{p_{1}}}\right)^{a_{1}}\left({\frac {a}{p_{2}}}\right)^{a_{2}}\cdots \left({\frac {a}{p_{\omega (n)}}}\right)^{a_{\omega (n)}}.}
In this formula
(
a
p
)
{\displaystyle ({\tfrac {a}{p}})}
is the Legendre symbol , defined for all integers a and all odd primes p by
(
a
p
)
=
{
0
if
a
≡
0
(
mod
p
)
,
+
1
if
a
≢
0
(
mod
p
)
and for some integer
x
,
a
≡
x
2
(
mod
p
)
−
1
if there is no such
x
.
{\displaystyle \left({\frac {a}{p}}\right)={\begin{cases}\;\;\,0&{\text{if }}a\equiv 0{\pmod {p}},\\+1&{\text{if }}a\not \equiv 0{\pmod {p}}{\text{ and for some integer }}x,\;a\equiv x^{2}{\pmod {p}}\\-1&{\text{if there is no such }}x.\end{cases}}}
Following the normal convention for the empty product,
(
a
1
)
=
1.
{\displaystyle \left({\frac {a}{1}}\right)=1.}
ω (n ) – distinct prime divisors[ edit ]
ω(n ) , defined above as the number of distinct primes dividing n , is additive (see Prime omega function ).
Completely additive functions [ edit ]
Ω(n ) – prime divisors[ edit ]
Ω(n ) , defined above as the number of prime factors of n counted with multiplicities, is completely additive (see Prime omega function ).
For a fixed prime p , ν p (n ) , defined above as the exponent of the largest power of p dividing n , is completely additive.
Logarithmic derivative [ edit ]
ld
(
n
)
=
D
(
n
)
n
=
∑
p
prime
p
∣
n
v
p
(
n
)
p
{\displaystyle \operatorname {ld} (n)={\frac {D(n)}{n}}=\sum _{\stackrel {p\mid n}{p{\text{ prime}}}}{\frac {v_{p}(n)}{p}}}
, where
D
(
n
)
{\displaystyle D(n)}
is the arithmetic derivative.
Neither multiplicative nor additive [ edit ]
π (x ), Π(x ), θ (x ), ψ (x ) – prime-counting functions[ edit ]
These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the prime number theorem . They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.
π (x ), the prime-counting function , is the number of primes not exceeding x . It is the summation function of the characteristic function of the prime numbers.
π
(
x
)
=
∑
p
≤
x
1
{\displaystyle \pi (x)=\sum _{p\leq x}1}
A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/k on integers which are the k -th power of some prime number, and the value 0 on other integers.
Π
(
x
)
=
∑
p
k
≤
x
1
k
.
{\displaystyle \Pi (x)=\sum _{p^{k}\leq x}{\frac {1}{k}}.}
ϑ (x ) and ψ (x ), the Chebyshev functions , are defined as sums of the natural logarithms of the primes not exceeding x .
ϑ
(
x
)
=
∑
p
≤
x
log
p
,
{\displaystyle \vartheta (x)=\sum _{p\leq x}\log p,}
ψ
(
x
)
=
∑
p
k
≤
x
log
p
.
{\displaystyle \psi (x)=\sum _{p^{k}\leq x}\log p.}
The second Chebyshev function ψ (x ) is the summation function of the von Mangoldt function just below.
Λ(n ) – von Mangoldt function[ edit ]
Λ(n ) , the von Mangoldt function, is 0 unless the argument n is a prime power p k , in which case it is the natural log of the prime p :
Λ
(
n
)
=
{
log
p
if
n
=
2
,
3
,
4
,
5
,
7
,
8
,
9
,
11
,
13
,
16
,
…
=
p
k
is a prime power
0
if
n
=
1
,
6
,
10
,
12
,
14
,
15
,
18
,
20
,
21
,
…
is not a prime power
.
{\displaystyle \Lambda (n)={\begin{cases}\log p&{\text{if }}n=2,3,4,5,7,8,9,11,13,16,\ldots =p^{k}{\text{ is a prime power}}\\0&{\text{if }}n=1,6,10,12,14,15,18,20,21,\dots \;\;\;\;{\text{ is not a prime power}}.\end{cases}}}
p (n ) – partition function[ edit ]
p (n ) , the partition function, is the number of ways of representing n as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:
p
(
n
)
=
|
{
(
a
1
,
a
2
,
…
a
k
)
:
0
<
a
1
≤
a
2
≤
⋯
≤
a
k
∧
n
=
a
1
+
a
2
+
⋯
+
a
k
}
|
.
{\displaystyle p(n)=\left|\left\{(a_{1},a_{2},\dots a_{k}):0<a_{1}\leq a_{2}\leq \cdots \leq a_{k}\;\land \;n=a_{1}+a_{2}+\cdots +a_{k}\right\}\right|.}
λ(n ) – Carmichael function[ edit ]
λ (n ) , the Carmichael function, is the smallest positive number such that
a
λ
(
n
)
≡
1
(
mod
n
)
{\displaystyle a^{\lambda (n)}\equiv 1{\pmod {n}}}
for all a coprime to n . Equivalently, it is the least common multiple of the orders of the elements of the multiplicative group of integers modulo n .
For powers of odd primes and for 2 and 4, λ (n ) is equal to the Euler totient function of n ; for powers of 2 greater than 4 it is equal to one half of the Euler totient function of n :
λ
(
n
)
=
{
ϕ
(
n
)
if
n
=
2
,
3
,
4
,
5
,
7
,
9
,
11
,
13
,
17
,
19
,
23
,
25
,
27
,
…
1
2
ϕ
(
n
)
if
n
=
8
,
16
,
32
,
64
,
…
{\displaystyle \lambda (n)={\begin{cases}\;\;\phi (n)&{\text{if }}n=2,3,4,5,7,9,11,13,17,19,23,25,27,\dots \\{\tfrac {1}{2}}\phi (n)&{\text{if }}n=8,16,32,64,\dots \end{cases}}}
and for general n it is the least common multiple of λ of each of the prime power factors of n :
λ
(
p
1
a
1
p
2
a
2
…
p
ω
(
n
)
a
ω
(
n
)
)
=
lcm
[
λ
(
p
1
a
1
)
,
λ
(
p
2
a
2
)
,
…
,
λ
(
p
ω
(
n
)
a
ω
(
n
)
)
]
.
{\displaystyle \lambda (p_{1}^{a_{1}}p_{2}^{a_{2}}\dots p_{\omega (n)}^{a_{\omega (n)}})=\operatorname {lcm} [\lambda (p_{1}^{a_{1}}),\;\lambda (p_{2}^{a_{2}}),\dots ,\lambda (p_{\omega (n)}^{a_{\omega (n)}})].}
h (n ) – Class number[ edit ]
h (n ) , the class number function, is the order of the ideal class group of an algebraic extension of the rationals with discriminant n . The notation is ambiguous, as there are in general many extensions with the same discriminant. See quadratic field and cyclotomic field for classical examples.
r k (n ) – Sum of k squares[ edit ]
r k (n ) is the number of ways n can be represented as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.
r
k
(
n
)
=
|
{
(
a
1
,
a
2
,
…
,
a
k
)
:
n
=
a
1
2
+
a
2
2
+
⋯
+
a
k
2
}
|
{\displaystyle r_{k}(n)=\left|\left\{(a_{1},a_{2},\dots ,a_{k}):n=a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}\right\}\right|}
D (n ) – Arithmetic derivative[ edit ]
Using the Heaviside notation for the derivative, the arithmetic derivative D (n ) is a function such that
D
(
n
)
=
1
{\displaystyle D(n)=1}
if n prime, and
D
(
m
n
)
=
m
D
(
n
)
+
D
(
m
)
n
{\displaystyle D(mn)=mD(n)+D(m)n}
(the product rule )
Summation functions [ edit ]
Given an arithmetic function a (n ), its summation function A (x ) is defined by
A
(
x
)
:=
∑
n
≤
x
a
(
n
)
.
{\displaystyle A(x):=\sum _{n\leq x}a(n).}
A can be regarded as a function of a real variable. Given a positive integer m , A is constant along open intervals m < x < m + 1, and has a jump discontinuity at each integer for which a (m ) ≠ 0.
Since such functions are often represented by series and integrals, to achieve pointwise convergence it is usual to define the value at the discontinuities as the average of the values to the left and right:
A
0
(
m
)
:=
1
2
(
∑
n
<
m
a
(
n
)
+
∑
n
≤
m
a
(
n
)
)
=
A
(
m
)
−
1
2
a
(
m
)
.
{\displaystyle A_{0}(m):={\frac {1}{2}}\left(\sum _{n<m}a(n)+\sum _{n\leq m}a(n)\right)=A(m)-{\frac {1}{2}}a(m).}
Individual values of arithmetic functions may fluctuate wildly – as in most of the above examples. Summation functions "smooth out" these fluctuations. In some cases it may be possible to find asymptotic behaviour for the summation function for large x .
A classical example of this phenomenon[ 9] is given by the divisor summatory function , the summation function of d (n ), the number of divisors of n :
lim inf
n
→
∞
d
(
n
)
=
2
{\displaystyle \liminf _{n\to \infty }d(n)=2}
lim sup
n
→
∞
log
d
(
n
)
log
log
n
log
n
=
log
2
{\displaystyle \limsup _{n\to \infty }{\frac {\log d(n)\log \log n}{\log n}}=\log 2}
lim
n
→
∞
d
(
1
)
+
d
(
2
)
+
⋯
+
d
(
n
)
log
(
1
)
+
log
(
2
)
+
⋯
+
log
(
n
)
=
1.
{\displaystyle \lim _{n\to \infty }{\frac {d(1)+d(2)+\cdots +d(n)}{\log(1)+\log(2)+\cdots +\log(n)}}=1.}
An average order of an arithmetic function is some simpler or better-understood function which has the same summation function asymptotically, and hence takes the same values "on average". We say that g is an average order of f if
∑
n
≤
x
f
(
n
)
∼
∑
n
≤
x
g
(
n
)
{\displaystyle \sum _{n\leq x}f(n)\sim \sum _{n\leq x}g(n)}
as x tends to infinity. The example above shows that d (n ) has the average order log(n ).[ 10]
Dirichlet convolution [ edit ]
Given an arithmetic function a (n ), let F a (s ), for complex s , be the function defined by the corresponding Dirichlet series (where it converges ):[ 11]
F
a
(
s
)
:=
∑
n
=
1
∞
a
(
n
)
n
s
.
{\displaystyle F_{a}(s):=\sum _{n=1}^{\infty }{\frac {a(n)}{n^{s}}}.}
F a (s ) is called a generating function of a (n ). The simplest such series, corresponding to the constant function a (n ) = 1 for all n , is ζ (s ) the Riemann zeta function .
The generating function of the Möbius function is the inverse of the zeta function:
ζ
(
s
)
∑
n
=
1
∞
μ
(
n
)
n
s
=
1
,
ℜ
s
>
1.
{\displaystyle \zeta (s)\,\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}=1,\;\;\Re s>1.}
Consider two arithmetic functions a and b and their respective generating functions F a (s ) and F b (s ). The product F a (s )F b (s ) can be computed as follows:
F
a
(
s
)
F
b
(
s
)
=
(
∑
m
=
1
∞
a
(
m
)
m
s
)
(
∑
n
=
1
∞
b
(
n
)
n
s
)
.
{\displaystyle F_{a}(s)F_{b}(s)=\left(\sum _{m=1}^{\infty }{\frac {a(m)}{m^{s}}}\right)\left(\sum _{n=1}^{\infty }{\frac {b(n)}{n^{s}}}\right).}
It is a straightforward exercise to show that if c (n ) is defined by
c
(
n
)
:=
∑
i
j
=
n
a
(
i
)
b
(
j
)
=
∑
i
∣
n
a
(
i
)
b
(
n
i
)
,
{\displaystyle c(n):=\sum _{ij=n}a(i)b(j)=\sum _{i\mid n}a(i)b\left({\frac {n}{i}}\right),}
then
F
c
(
s
)
=
F
a
(
s
)
F
b
(
s
)
.
{\displaystyle F_{c}(s)=F_{a}(s)F_{b}(s).}
This function c is called the Dirichlet convolution of a and b , and is denoted by
a
∗
b
{\displaystyle a*b}
.
A particularly important case is convolution with the constant function a (n ) = 1 for all n , corresponding to multiplying the generating function by the zeta function:
g
(
n
)
=
∑
d
∣
n
f
(
d
)
.
{\displaystyle g(n)=\sum _{d\mid n}f(d).}
Multiplying by the inverse of the zeta function gives the Möbius inversion formula:
f
(
n
)
=
∑
d
∣
n
μ
(
n
d
)
g
(
d
)
.
{\displaystyle f(n)=\sum _{d\mid n}\mu \left({\frac {n}{d}}\right)g(d).}
If f is multiplicative, then so is g . If f is completely multiplicative, then g is multiplicative, but may or may not be completely multiplicative.
Relations among the functions [ edit ]
There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page divisor sum identities contains many more generalized and related examples of identities involving arithmetic functions.
Here are a few examples:
Dirichlet convolutions [ edit ]
∑
δ
∣
n
μ
(
δ
)
=
∑
δ
∣
n
λ
(
n
δ
)
|
μ
(
δ
)
|
=
{
1
if
n
=
1
0
if
n
≠
1
{\displaystyle \sum _{\delta \mid n}\mu (\delta )=\sum _{\delta \mid n}\lambda \left({\frac {n}{\delta }}\right)|\mu (\delta )|={\begin{cases}1&{\text{if }}n=1\\0&{\text{if }}n\neq 1\end{cases}}}
where λ is the Liouville function.[ 12]
∑
δ
∣
n
φ
(
δ
)
=
n
.
{\displaystyle \sum _{\delta \mid n}\varphi (\delta )=n.}
[ 13]
φ
(
n
)
=
∑
δ
∣
n
μ
(
n
δ
)
δ
=
n
∑
δ
∣
n
μ
(
δ
)
δ
.
{\displaystyle \varphi (n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\delta =n\sum _{\delta \mid n}{\frac {\mu (\delta )}{\delta }}.}
Möbius inversion
∑
d
∣
n
J
k
(
d
)
=
n
k
.
{\displaystyle \sum _{d\mid n}J_{k}(d)=n^{k}.}
[ 14]
J
k
(
n
)
=
∑
δ
∣
n
μ
(
n
δ
)
δ
k
=
n
k
∑
δ
∣
n
μ
(
δ
)
δ
k
.
{\displaystyle J_{k}(n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\delta ^{k}=n^{k}\sum _{\delta \mid n}{\frac {\mu (\delta )}{\delta ^{k}}}.}
Möbius inversion
∑
δ
∣
n
δ
s
J
r
(
δ
)
J
s
(
n
δ
)
=
J
r
+
s
(
n
)
{\displaystyle \sum _{\delta \mid n}\delta ^{s}J_{r}(\delta )J_{s}\left({\frac {n}{\delta }}\right)=J_{r+s}(n)}
[ 15]
∑
δ
∣
n
φ
(
δ
)
d
(
n
δ
)
=
σ
(
n
)
.
{\displaystyle \sum _{\delta \mid n}\varphi (\delta )d\left({\frac {n}{\delta }}\right)=\sigma (n).}
[ 16] [ 17]
∑
δ
∣
n
|
μ
(
δ
)
|
=
2
ω
(
n
)
.
{\displaystyle \sum _{\delta \mid n}|\mu (\delta )|=2^{\omega (n)}.}
[ 18]
|
μ
(
n
)
|
=
∑
δ
∣
n
μ
(
n
δ
)
2
ω
(
δ
)
.
{\displaystyle |\mu (n)|=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)2^{\omega (\delta )}.}
Möbius inversion
∑
δ
∣
n
2
ω
(
δ
)
=
d
(
n
2
)
.
{\displaystyle \sum _{\delta \mid n}2^{\omega (\delta )}=d(n^{2}).}
2
ω
(
n
)
=
∑
δ
∣
n
μ
(
n
δ
)
d
(
δ
2
)
.
{\displaystyle 2^{\omega (n)}=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)d(\delta ^{2}).}
Möbius inversion
∑
δ
∣
n
d
(
δ
2
)
=
d
2
(
n
)
.
{\displaystyle \sum _{\delta \mid n}d(\delta ^{2})=d^{2}(n).}
d
(
n
2
)
=
∑
δ
∣
n
μ
(
n
δ
)
d
2
(
δ
)
.
{\displaystyle d(n^{2})=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)d^{2}(\delta ).}
Möbius inversion
∑
δ
∣
n
d
(
n
δ
)
2
ω
(
δ
)
=
d
2
(
n
)
.
{\displaystyle \sum _{\delta \mid n}d\left({\frac {n}{\delta }}\right)2^{\omega (\delta )}=d^{2}(n).}
∑
δ
∣
n
λ
(
δ
)
=
{
1
if
n
is a square
0
if
n
is not square.
{\displaystyle \sum _{\delta \mid n}\lambda (\delta )={\begin{cases}&1{\text{ if }}n{\text{ is a square }}\\&0{\text{ if }}n{\text{ is not square.}}\end{cases}}}
where λ is the Liouville function .
∑
δ
∣
n
Λ
(
δ
)
=
log
n
.
{\displaystyle \sum _{\delta \mid n}\Lambda (\delta )=\log n.}
[ 19]
Λ
(
n
)
=
∑
δ
∣
n
μ
(
n
δ
)
log
(
δ
)
.
{\displaystyle \Lambda (n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\log(\delta ).}
Möbius inversion
For all
k
≥
4
,
r
k
(
n
)
>
0.
{\displaystyle k\geq 4,\;\;\;r_{k}(n)>0.}
(Lagrange's four-square theorem ).
r
2
(
n
)
=
4
∑
d
∣
n
(
−
4
d
)
,
{\displaystyle r_{2}(n)=4\sum _{d\mid n}\left({\frac {-4}{d}}\right),}
[ 20]
where the Kronecker symbol has the values
(
−
4
n
)
=
{
+
1
if
n
≡
1
(
mod
4
)
−
1
if
n
≡
3
(
mod
4
)
0
if
n
is even
.
{\displaystyle \left({\frac {-4}{n}}\right)={\begin{cases}+1&{\text{if }}n\equiv 1{\pmod {4}}\\-1&{\text{if }}n\equiv 3{\pmod {4}}\\\;\;\;0&{\text{if }}n{\text{ is even}}.\\\end{cases}}}
There is a formula for r3 in the section on class numbers below.
r
4
(
n
)
=
8
∑
4
∤
d
d
∣
n
d
=
8
(
2
+
(
−
1
)
n
)
∑
2
∤
d
d
∣
n
d
=
{
8
σ
(
n
)
if
n
is odd
24
σ
(
n
2
ν
)
if
n
is even
,
{\displaystyle r_{4}(n)=8\sum _{\stackrel {d\mid n}{4\,\nmid \,d}}d=8(2+(-1)^{n})\sum _{\stackrel {d\mid n}{2\,\nmid \,d}}d={\begin{cases}8\sigma (n)&{\text{if }}n{\text{ is odd }}\\24\sigma \left({\frac {n}{2^{\nu }}}\right)&{\text{if }}n{\text{ is even }}\end{cases}},}
where ν = ν 2 (n ) . [ 21] [ 22] [ 23]
r
6
(
n
)
=
16
∑
d
∣
n
χ
(
n
d
)
d
2
−
4
∑
d
∣
n
χ
(
d
)
d
2
,
{\displaystyle r_{6}(n)=16\sum _{d\mid n}\chi \left({\frac {n}{d}}\right)d^{2}-4\sum _{d\mid n}\chi (d)d^{2},}
where
χ
(
n
)
=
(
−
4
n
)
.
{\displaystyle \chi (n)=\left({\frac {-4}{n}}\right).}
[ 24]
Define the function σ k * (n ) as[ 25]
σ
k
∗
(
n
)
=
(
−
1
)
n
∑
d
∣
n
(
−
1
)
d
d
k
=
{
∑
d
∣
n
d
k
=
σ
k
(
n
)
if
n
is odd
∑
2
∣
d
d
∣
n
d
k
−
∑
2
∤
d
d
∣
n
d
k
if
n
is even
.
{\displaystyle \sigma _{k}^{*}(n)=(-1)^{n}\sum _{d\mid n}(-1)^{d}d^{k}={\begin{cases}\sum _{d\mid n}d^{k}=\sigma _{k}(n)&{\text{if }}n{\text{ is odd }}\\\sum _{\stackrel {d\mid n}{2\,\mid \,d}}d^{k}-\sum _{\stackrel {d\mid n}{2\,\nmid \,d}}d^{k}&{\text{if }}n{\text{ is even}}.\end{cases}}}
That is, if n is odd, σ k * (n ) is the sum of the k th powers of the divisors of n , that is, σ k (n ), and if n is even it is the sum of the k th powers of the even divisors of n minus the sum of the k th powers of the odd divisors of n .
r
8
(
n
)
=
16
σ
3
∗
(
n
)
.
{\displaystyle r_{8}(n)=16\sigma _{3}^{*}(n).}
[ 24] [ 26]
Adopt the convention that Ramanujan's τ (x ) = 0 if x is not an integer.
r
24
(
n
)
=
16
691
σ
11
∗
(
n
)
+
128
691
{
(
−
1
)
n
−
1
259
τ
(
n
)
−
512
τ
(
n
2
)
}
{\displaystyle r_{24}(n)={\frac {16}{691}}\sigma _{11}^{*}(n)+{\frac {128}{691}}\left\{(-1)^{n-1}259\tau (n)-512\tau \left({\frac {n}{2}}\right)\right\}}
[ 27]
Divisor sum convolutions [ edit ]
Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the product of two power series :
(
∑
n
=
0
∞
a
n
x
n
)
(
∑
n
=
0
∞
b
n
x
n
)
=
∑
i
=
0
∞
∑
j
=
0
∞
a
i
b
j
x
i
+
j
=
∑
n
=
0
∞
(
∑
i
=
0
n
a
i
b
n
−
i
)
x
n
=
∑
n
=
0
∞
c
n
x
n
.
{\displaystyle \left(\sum _{n=0}^{\infty }a_{n}x^{n}\right)\left(\sum _{n=0}^{\infty }b_{n}x^{n}\right)=\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }a_{i}b_{j}x^{i+j}=\sum _{n=0}^{\infty }\left(\sum _{i=0}^{n}a_{i}b_{n-i}\right)x^{n}=\sum _{n=0}^{\infty }c_{n}x^{n}.}
The sequence
c
n
=
∑
i
=
0
n
a
i
b
n
−
i
{\displaystyle c_{n}=\sum _{i=0}^{n}a_{i}b_{n-i}}
is called the convolution or the Cauchy product of the sequences a n and b n .
These formulas may be proved analytically (see Eisenstein series ) or by elementary methods.[ 28]
σ
3
(
n
)
=
1
5
{
6
n
σ
1
(
n
)
−
σ
1
(
n
)
+
12
∑
0
<
k
<
n
σ
1
(
k
)
σ
1
(
n
−
k
)
}
.
{\displaystyle \sigma _{3}(n)={\frac {1}{5}}\left\{6n\sigma _{1}(n)-\sigma _{1}(n)+12\sum _{0<k<n}\sigma _{1}(k)\sigma _{1}(n-k)\right\}.}
[ 29]
σ
5
(
n
)
=
1
21
{
10
(
3
n
−
1
)
σ
3
(
n
)
+
σ
1
(
n
)
+
240
∑
0
<
k
<
n
σ
1
(
k
)
σ
3
(
n
−
k
)
}
.
{\displaystyle \sigma _{5}(n)={\frac {1}{21}}\left\{10(3n-1)\sigma _{3}(n)+\sigma _{1}(n)+240\sum _{0<k<n}\sigma _{1}(k)\sigma _{3}(n-k)\right\}.}
[ 30]
σ
7
(
n
)
=
1
20
{
21
(
2
n
−
1
)
σ
5
(
n
)
−
σ
1
(
n
)
+
504
∑
0
<
k
<
n
σ
1
(
k
)
σ
5
(
n
−
k
)
}
=
σ
3
(
n
)
+
120
∑
0
<
k
<
n
σ
3
(
k
)
σ
3
(
n
−
k
)
.
{\displaystyle {\begin{aligned}\sigma _{7}(n)&={\frac {1}{20}}\left\{21(2n-1)\sigma _{5}(n)-\sigma _{1}(n)+504\sum _{0<k<n}\sigma _{1}(k)\sigma _{5}(n-k)\right\}\\&=\sigma _{3}(n)+120\sum _{0<k<n}\sigma _{3}(k)\sigma _{3}(n-k).\end{aligned}}}
[ 30] [ 31]
σ
9
(
n
)
=
1
11
{
10
(
3
n
−
2
)
σ
7
(
n
)
+
σ
1
(
n
)
+
480
∑
0
<
k
<
n
σ
1
(
k
)
σ
7
(
n
−
k
)
}
=
1
11
{
21
σ
5
(
n
)
−
10
σ
3
(
n
)
+
5040
∑
0
<
k
<
n
σ
3
(
k
)
σ
5
(
n
−
k
)
}
.
{\displaystyle {\begin{aligned}\sigma _{9}(n)&={\frac {1}{11}}\left\{10(3n-2)\sigma _{7}(n)+\sigma _{1}(n)+480\sum _{0<k<n}\sigma _{1}(k)\sigma _{7}(n-k)\right\}\\&={\frac {1}{11}}\left\{21\sigma _{5}(n)-10\sigma _{3}(n)+5040\sum _{0<k<n}\sigma _{3}(k)\sigma _{5}(n-k)\right\}.\end{aligned}}}
[ 29] [ 32]
τ
(
n
)
=
65
756
σ
11
(
n
)
+
691
756
σ
5
(
n
)
−
691
3
∑
0
<
k
<
n
σ
5
(
k
)
σ
5
(
n
−
k
)
,
{\displaystyle \tau (n)={\frac {65}{756}}\sigma _{11}(n)+{\frac {691}{756}}\sigma _{5}(n)-{\frac {691}{3}}\sum _{0<k<n}\sigma _{5}(k)\sigma _{5}(n-k),}
where τ (n ) is Ramanujan's function. [ 33] [ 34]
Since σ k (n ) (for natural number k ) and τ (n ) are integers, the above formulas can be used to prove congruences[ 35] for the functions. See Ramanujan tau function for some examples.
Extend the domain of the partition function by setting p (0) = 1.
p
(
n
)
=
1
n
∑
1
≤
k
≤
n
σ
(
k
)
p
(
n
−
k
)
.
{\displaystyle p(n)={\frac {1}{n}}\sum _{1\leq k\leq n}\sigma (k)p(n-k).}
[ 36] This recurrence can be used to compute p (n ).
Peter Gustav Lejeune Dirichlet discovered formulas that relate the class number h of quadratic number fields to the Jacobi symbol.[ 37]
An integer D is called a fundamental discriminant if it is the discriminant of a quadratic number field. This is equivalent to D ≠ 1 and either a) D is squarefree and D ≡ 1 (mod 4) or b) D ≡ 0 (mod 4), D /4 is squarefree, and D /4 ≡ 2 or 3 (mod 4).[ 38]
Extend the Jacobi symbol to accept even numbers in the "denominator" by defining the Kronecker symbol :
(
a
2
)
=
{
0
if
a
is even
(
−
1
)
a
2
−
1
8
if
a
is odd.
{\displaystyle \left({\frac {a}{2}}\right)={\begin{cases}\;\;\,0&{\text{ if }}a{\text{ is even}}\\(-1)^{\frac {a^{2}-1}{8}}&{\text{ if }}a{\text{ is odd. }}\end{cases}}}
Then if D < −4 is a fundamental discriminant[ 39] [ 40]
h
(
D
)
=
1
D
∑
r
=
1
|
D
|
r
(
D
r
)
=
1
2
−
(
D
2
)
∑
r
=
1
|
D
|
/
2
(
D
r
)
.
{\displaystyle {\begin{aligned}h(D)&={\frac {1}{D}}\sum _{r=1}^{|D|}r\left({\frac {D}{r}}\right)\\&={\frac {1}{2-\left({\tfrac {D}{2}}\right)}}\sum _{r=1}^{|D|/2}\left({\frac {D}{r}}\right).\end{aligned}}}
There is also a formula relating r 3 and h . Again, let D be a fundamental discriminant, D < −4. Then[ 41]
r
3
(
|
D
|
)
=
12
(
1
−
(
D
2
)
)
h
(
D
)
.
{\displaystyle r_{3}(|D|)=12\left(1-\left({\frac {D}{2}}\right)\right)h(D).}
Let
H
n
=
1
+
1
2
+
1
3
+
⋯
+
1
n
{\displaystyle H_{n}=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}}
be the n th harmonic number . Then
σ
(
n
)
≤
H
n
+
e
H
n
log
H
n
{\displaystyle \sigma (n)\leq H_{n}+e^{H_{n}}\log H_{n}}
is true for every natural number n if and only if the Riemann hypothesis is true. [ 42]
The Riemann hypothesis is also equivalent to the statement that, for all n > 5040,
σ
(
n
)
<
e
γ
n
log
log
n
{\displaystyle \sigma (n)<e^{\gamma }n\log \log n}
(where γ is the Euler–Mascheroni constant ). This is Robin's theorem .
∑
p
ν
p
(
n
)
=
Ω
(
n
)
.
{\displaystyle \sum _{p}\nu _{p}(n)=\Omega (n).}
ψ
(
x
)
=
∑
n
≤
x
Λ
(
n
)
.
{\displaystyle \psi (x)=\sum _{n\leq x}\Lambda (n).}
[ 43]
Π
(
x
)
=
∑
n
≤
x
Λ
(
n
)
log
n
.
{\displaystyle \Pi (x)=\sum _{n\leq x}{\frac {\Lambda (n)}{\log n}}.}
[ 44]
e
θ
(
x
)
=
∏
p
≤
x
p
.
{\displaystyle e^{\theta (x)}=\prod _{p\leq x}p.}
[ 45]
e
ψ
(
x
)
=
lcm
[
1
,
2
,
…
,
⌊
x
⌋
]
.
{\displaystyle e^{\psi (x)}=\operatorname {lcm} [1,2,\dots ,\lfloor x\rfloor ].}
[ 46]
In 1965 P Kesava Menon proved[ 47]
∑
gcd
(
k
,
n
)
=
1
1
≤
k
≤
n
gcd
(
k
−
1
,
n
)
=
φ
(
n
)
d
(
n
)
.
{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}\gcd(k-1,n)=\varphi (n)d(n).}
This has been generalized by a number of mathematicians. For example,
B. Sury[ 48]
∑
gcd
(
k
1
,
n
)
=
1
1
≤
k
1
,
k
2
,
…
,
k
s
≤
n
gcd
(
k
1
−
1
,
k
2
,
…
,
k
s
,
n
)
=
φ
(
n
)
σ
s
−
1
(
n
)
.
{\displaystyle \sum _{\stackrel {1\leq k_{1},k_{2},\dots ,k_{s}\leq n}{\gcd(k_{1},n)=1}}\gcd(k_{1}-1,k_{2},\dots ,k_{s},n)=\varphi (n)\sigma _{s-1}(n).}
N. Rao[ 49]
∑
gcd
(
k
1
,
k
2
,
…
,
k
s
,
n
)
=
1
1
≤
k
1
,
k
2
,
…
,
k
s
≤
n
gcd
(
k
1
−
a
1
,
k
2
−
a
2
,
…
,
k
s
−
a
s
,
n
)
s
=
J
s
(
n
)
d
(
n
)
,
{\displaystyle \sum _{\stackrel {1\leq k_{1},k_{2},\dots ,k_{s}\leq n}{\gcd(k_{1},k_{2},\dots ,k_{s},n)=1}}\gcd(k_{1}-a_{1},k_{2}-a_{2},\dots ,k_{s}-a_{s},n)^{s}=J_{s}(n)d(n),}
where a 1 , a 2 , ..., a s are integers, gcd(a 1 , a 2 , ..., a s , n ) = 1.
László Fejes Tóth [ 50]
∑
gcd
(
k
,
m
)
=
1
1
≤
k
≤
m
gcd
(
k
2
−
1
,
m
1
)
gcd
(
k
2
−
1
,
m
2
)
=
φ
(
n
)
∑
d
2
∣
m
2
d
1
∣
m
1
φ
(
gcd
(
d
1
,
d
2
)
)
2
ω
(
lcm
(
d
1
,
d
2
)
)
,
{\displaystyle \sum _{\stackrel {1\leq k\leq m}{\gcd(k,m)=1}}\gcd(k^{2}-1,m_{1})\gcd(k^{2}-1,m_{2})=\varphi (n)\sum _{\stackrel {d_{1}\mid m_{1}}{d_{2}\mid m_{2}}}\varphi (\gcd(d_{1},d_{2}))2^{\omega (\operatorname {lcm} (d_{1},d_{2}))},}
where m 1 and m 2 are odd, m = lcm(m 1 , m 2 ).
In fact, if f is any arithmetical function[ 51] [ 52]
∑
gcd
(
k
,
n
)
=
1
1
≤
k
≤
n
f
(
gcd
(
k
−
1
,
n
)
)
=
φ
(
n
)
∑
d
∣
n
(
μ
∗
f
)
(
d
)
φ
(
d
)
,
{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}f(\gcd(k-1,n))=\varphi (n)\sum _{d\mid n}{\frac {(\mu *f)(d)}{\varphi (d)}},}
where
∗
{\displaystyle *}
stands for Dirichlet convolution.
Let m and n be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of quadratic reciprocity :
(
m
n
)
(
n
m
)
=
(
−
1
)
(
m
−
1
)
(
n
−
1
)
/
4
.
{\displaystyle \left({\frac {m}{n}}\right)\left({\frac {n}{m}}\right)=(-1)^{(m-1)(n-1)/4}.}
Let D (n ) be the arithmetic derivative. Then the logarithmic derivative
D
(
n
)
n
=
∑
p
prime
p
∣
n
v
p
(
n
)
p
.
{\displaystyle {\frac {D(n)}{n}}=\sum _{\stackrel {p\mid n}{p{\text{ prime}}}}{\frac {v_{p}(n)}{p}}.}
See Arithmetic derivative for details.
Let λ (n ) be Liouville's function. Then
|
λ
(
n
)
|
μ
(
n
)
=
λ
(
n
)
|
μ
(
n
)
|
=
μ
(
n
)
,
{\displaystyle |\lambda (n)|\mu (n)=\lambda (n)|\mu (n)|=\mu (n),}
and
λ
(
n
)
μ
(
n
)
=
|
μ
(
n
)
|
=
μ
2
(
n
)
.
{\displaystyle \lambda (n)\mu (n)=|\mu (n)|=\mu ^{2}(n).}
Let λ (n ) be Carmichael's function. Then
λ
(
n
)
∣
ϕ
(
n
)
.
{\displaystyle \lambda (n)\mid \phi (n).}
Further,
λ
(
n
)
=
ϕ
(
n
)
if and only if
n
=
{
1
,
2
,
4
;
3
,
5
,
7
,
9
,
11
,
…
(that is,
p
k
, where
p
is an odd prime)
;
6
,
10
,
14
,
18
,
…
(that is,
2
p
k
, where
p
is an odd prime)
.
{\displaystyle \lambda (n)=\phi (n){\text{ if and only if }}n={\begin{cases}1,2,4;\\3,5,7,9,11,\ldots {\text{ (that is, }}p^{k}{\text{, where }}p{\text{ is an odd prime)}};\\6,10,14,18,\ldots {\text{ (that is, }}2p^{k}{\text{, where }}p{\text{ is an odd prime)}}.\end{cases}}}
See Multiplicative group of integers modulo n and Primitive root modulo n .
2
ω
(
n
)
≤
d
(
n
)
≤
2
Ω
(
n
)
.
{\displaystyle 2^{\omega (n)}\leq d(n)\leq 2^{\Omega (n)}.}
[ 53] [ 54]
6
π
2
<
ϕ
(
n
)
σ
(
n
)
n
2
<
1.
{\displaystyle {\frac {6}{\pi ^{2}}}<{\frac {\phi (n)\sigma (n)}{n^{2}}}<1.}
[ 55]
c
q
(
n
)
=
μ
(
q
gcd
(
q
,
n
)
)
ϕ
(
q
gcd
(
q
,
n
)
)
ϕ
(
q
)
=
∑
δ
∣
gcd
(
q
,
n
)
μ
(
q
δ
)
δ
.
{\displaystyle {\begin{aligned}c_{q}(n)&={\frac {\mu \left({\frac {q}{\gcd(q,n)}}\right)}{\phi \left({\frac {q}{\gcd(q,n)}}\right)}}\phi (q)\\&=\sum _{\delta \mid \gcd(q,n)}\mu \left({\frac {q}{\delta }}\right)\delta .\end{aligned}}}
[ 56] Note that
ϕ
(
q
)
=
∑
δ
∣
q
μ
(
q
δ
)
δ
.
{\displaystyle \phi (q)=\sum _{\delta \mid q}\mu \left({\frac {q}{\delta }}\right)\delta .}
[ 57]
c
q
(
1
)
=
μ
(
q
)
.
{\displaystyle c_{q}(1)=\mu (q).}
c
q
(
q
)
=
ϕ
(
q
)
.
{\displaystyle c_{q}(q)=\phi (q).}
∑
δ
∣
n
d
3
(
δ
)
=
(
∑
δ
∣
n
d
(
δ
)
)
2
.
{\displaystyle \sum _{\delta \mid n}d^{3}(\delta )=\left(\sum _{\delta \mid n}d(\delta )\right)^{2}.}
[ 58] Compare this with 13 + 23 + 33 + ... + n 3 = (1 + 2 + 3 + ... + n )2
d
(
u
v
)
=
∑
δ
∣
gcd
(
u
,
v
)
μ
(
δ
)
d
(
u
δ
)
d
(
v
δ
)
.
{\displaystyle d(uv)=\sum _{\delta \mid \gcd(u,v)}\mu (\delta )d\left({\frac {u}{\delta }}\right)d\left({\frac {v}{\delta }}\right).}
[ 59]
σ
k
(
u
)
σ
k
(
v
)
=
∑
δ
∣
gcd
(
u
,
v
)
δ
k
σ
k
(
u
v
δ
2
)
.
{\displaystyle \sigma _{k}(u)\sigma _{k}(v)=\sum _{\delta \mid \gcd(u,v)}\delta ^{k}\sigma _{k}\left({\frac {uv}{\delta ^{2}}}\right).}
[ 60]
τ
(
u
)
τ
(
v
)
=
∑
δ
∣
gcd
(
u
,
v
)
δ
11
τ
(
u
v
δ
2
)
,
{\displaystyle \tau (u)\tau (v)=\sum _{\delta \mid \gcd(u,v)}\delta ^{11}\tau \left({\frac {uv}{\delta ^{2}}}\right),}
where τ (n ) is Ramanujan's function. [ 61]
First 100 values of some arithmetic functions [ edit ]
n
factorization
𝜙(n )
ω (n )
Ω(n )
𝜆(n )
𝜇(n )
𝛬(n )
π (n )
𝜎0 (n )
𝜎1 (n )
𝜎2 (n )
r 2 (n )
r 3 (n )
r 4 (n )
1
1
1
0
0
1
1
0
0
1
1
1
4
6
8
2
2
1
1
1
−1
−1
0.69
1
2
3
5
4
12
24
3
3
2
1
1
−1
−1
1.10
2
2
4
10
0
8
32
4
22
2
1
2
1
0
0.69
2
3
7
21
4
6
24
5
5
4
1
1
−1
−1
1.61
3
2
6
26
8
24
48
6
2 · 3
2
2
2
1
1
0
3
4
12
50
0
24
96
7
7
6
1
1
−1
−1
1.95
4
2
8
50
0
0
64
8
23
4
1
3
−1
0
0.69
4
4
15
85
4
12
24
9
32
6
1
2
1
0
1.10
4
3
13
91
4
30
104
10
2 · 5
4
2
2
1
1
0
4
4
18
130
8
24
144
11
11
10
1
1
−1
−1
2.40
5
2
12
122
0
24
96
12
22 · 3
4
2
3
−1
0
0
5
6
28
210
0
8
96
13
13
12
1
1
−1
−1
2.56
6
2
14
170
8
24
112
14
2 · 7
6
2
2
1
1
0
6
4
24
250
0
48
192
15
3 · 5
8
2
2
1
1
0
6
4
24
260
0
0
192
16
24
8
1
4
1
0
0.69
6
5
31
341
4
6
24
17
17
16
1
1
−1
−1
2.83
7
2
18
290
8
48
144
18
2 · 32
6
2
3
−1
0
0
7
6
39
455
4
36
312
19
19
18
1
1
−1
−1
2.94
8
2
20
362
0
24
160
20
22 · 5
8
2
3
−1
0
0
8
6
42
546
8
24
144
21
3 · 7
12
2
2
1
1
0
8
4
32
500
0
48
256
22
2 · 11
10
2
2
1
1
0
8
4
36
610
0
24
288
23
23
22
1
1
−1
−1
3.14
9
2
24
530
0
0
192
24
23 · 3
8
2
4
1
0
0
9
8
60
850
0
24
96
25
52
20
1
2
1
0
1.61
9
3
31
651
12
30
248
26
2 · 13
12
2
2
1
1
0
9
4
42
850
8
72
336
27
33
18
1
3
−1
0
1.10
9
4
40
820
0
32
320
28
22 · 7
12
2
3
−1
0
0
9
6
56
1050
0
0
192
29
29
28
1
1
−1
−1
3.37
10
2
30
842
8
72
240
30
2 · 3 · 5
8
3
3
−1
−1
0
10
8
72
1300
0
48
576
31
31
30
1
1
−1
−1
3.43
11
2
32
962
0
0
256
32
25
16
1
5
−1
0
0.69
11
6
63
1365
4
12
24
33
3 · 11
20
2
2
1
1
0
11
4
48
1220
0
48
384
34
2 · 17
16
2
2
1
1
0
11
4
54
1450
8
48
432
35
5 · 7
24
2
2
1
1
0
11
4
48
1300
0
48
384
36
22 · 32
12
2
4
1
0
0
11
9
91
1911
4
30
312
37
37
36
1
1
−1
−1
3.61
12
2
38
1370
8
24
304
38
2 · 19
18
2
2
1
1
0
12
4
60
1810
0
72
480
39
3 · 13
24
2
2
1
1
0
12
4
56
1700
0
0
448
40
23 · 5
16
2
4
1
0
0
12
8
90
2210
8
24
144
41
41
40
1
1
−1
−1
3.71
13
2
42
1682
8
96
336
42
2 · 3 · 7
12
3
3
−1
−1
0
13
8
96
2500
0
48
768
43
43
42
1
1
−1
−1
3.76
14
2
44
1850
0
24
352
44
22 · 11
20
2
3
−1
0
0
14
6
84
2562
0
24
288
45
32 · 5
24
2
3
−1
0
0
14
6
78
2366
8
72
624
46
2 · 23
22
2
2
1
1
0
14
4
72
2650
0
48
576
47
47
46
1
1
−1
−1
3.85
15
2
48
2210
0
0
384
48
24 · 3
16
2
5
−1
0
0
15
10
124
3410
0
8
96
49
72
42
1
2
1
0
1.95
15
3
57
2451
4
54
456
50
2 · 52
20
2
3
−1
0
0
15
6
93
3255
12
84
744
51
3 · 17
32
2
2
1
1
0
15
4
72
2900
0
48
576
52
22 · 13
24
2
3
−1
0
0
15
6
98
3570
8
24
336
53
53
52
1
1
−1
−1
3.97
16
2
54
2810
8
72
432
54
2 · 33
18
2
4
1
0
0
16
8
120
4100
0
96
960
55
5 · 11
40
2
2
1
1
0
16
4
72
3172
0
0
576
56
23 · 7
24
2
4
1
0
0
16
8
120
4250
0
48
192
57
3 · 19
36
2
2
1
1
0
16
4
80
3620
0
48
640
58
2 · 29
28
2
2
1
1
0
16
4
90
4210
8
24
720
59
59
58
1
1
−1
−1
4.08
17
2
60
3482
0
72
480
60
22 · 3 · 5
16
3
4
1
0
0
17
12
168
5460
0
0
576
61
61
60
1
1
−1
−1
4.11
18
2
62
3722
8
72
496
62
2 · 31
30
2
2
1
1
0
18
4
96
4810
0
96
768
63
32 · 7
36
2
3
−1
0
0
18
6
104
4550
0
0
832
64
26
32
1
6
1
0
0.69
18
7
127
5461
4
6
24
65
5 · 13
48
2
2
1
1
0
18
4
84
4420
16
96
672
66
2 · 3 · 11
20
3
3
−1
−1
0
18
8
144
6100
0
96
1152
67
67
66
1
1
−1
−1
4.20
19
2
68
4490
0
24
544
68
22 · 17
32
2
3
−1
0
0
19
6
126
6090
8
48
432
69
3 · 23
44
2
2
1
1
0
19
4
96
5300
0
96
768
70
2 · 5 · 7
24
3
3
−1
−1
0
19
8
144
6500
0
48
1152
71
71
70
1
1
−1
−1
4.26
20
2
72
5042
0
0
576
72
23 · 32
24
2
5
−1
0
0
20
12
195
7735
4
36
312
73
73
72
1
1
−1
−1
4.29
21
2
74
5330
8
48
592
74
2 · 37
36
2
2
1
1
0
21
4
114
6850
8
120
912
75
3 · 52
40
2
3
−1
0
0
21
6
124
6510
0
56
992
76
22 · 19
36
2
3
−1
0
0
21
6
140
7602
0
24
480
77
7 · 11
60
2
2
1
1
0
21
4
96
6100
0
96
768
78
2 · 3 · 13
24
3
3
−1
−1
0
21
8
168
8500
0
48
1344
79
79
78
1
1
−1
−1
4.37
22
2
80
6242
0
0
640
80
24 · 5
32
2
5
−1
0
0
22
10
186
8866
8
24
144
81
34
54
1
4
1
0
1.10
22
5
121
7381
4
102
968
82
2 · 41
40
2
2
1
1
0
22
4
126
8410
8
48
1008
83
83
82
1
1
−1
−1
4.42
23
2
84
6890
0
72
672
84
22 · 3 · 7
24
3
4
1
0
0
23
12
224
10500
0
48
768
85
5 · 17
64
2
2
1
1
0
23
4
108
7540
16
48
864
86
2 · 43
42
2
2
1
1
0
23
4
132
9250
0
120
1056
87
3 · 29
56
2
2
1
1
0
23
4
120
8420
0
0
960
88
23 · 11
40
2
4
1
0
0
23
8
180
10370
0
24
288
89
89
88
1
1
−1
−1
4.49
24
2
90
7922
8
144
720
90
2 · 32 · 5
24
3
4
1
0
0
24
12
234
11830
8
120
1872
91
7 · 13
72
2
2
1
1
0
24
4
112
8500
0
48
896
92
22 · 23
44
2
3
−1
0
0
24
6
168
11130
0
0
576
93
3 · 31
60
2
2
1
1
0
24
4
128
9620
0
48
1024
94
2 · 47
46
2
2
1
1
0
24
4
144
11050
0
96
1152
95
5 · 19
72
2
2
1
1
0
24
4
120
9412
0
0
960
96
25 · 3
32
2
6
1
0
0
24
12
252
13650
0
24
96
97
97
96
1
1
−1
−1
4.57
25
2
98
9410
8
48
784
98
2 · 72
42
2
3
−1
0
0
25
6
171
12255
4
108
1368
99
32 · 11
60
2
3
−1
0
0
25
6
156
11102
0
72
1248
100
22 · 52
40
2
4
1
0
0
25
9
217
13671
12
30
744
n
factorization
𝜙(n )
ω (n )
Ω(n )
𝜆(n )
𝜇(n )
𝛬(n )
π (n )
𝜎0 (n )
𝜎1 (n )
𝜎2 (n )
r 2 (n )
r 3 (n )
r 4 (n )
^ Long (1972 , p. 151)
^ Pettofrezzo & Byrkit (1970 , p. 58)
^ Niven & Zuckerman, 4.2.
^ Nagell, I.9.
^ Bateman & Diamond, 2.1.
^ Hardy & Wright, intro. to Ch. XVI
^ Hardy, Ramanujan , § 10.2
^ Apostol, Modular Functions ... , § 1.15, Ch. 4, and ch. 6
^ Hardy & Wright, §§ 18.1–18.2
^ Gérald Tenenbaum (1995). Introduction to Analytic and Probabilistic Number Theory . Cambridge studies in advanced mathematics. Vol. 46. Cambridge University Press . pp. 36–55. ISBN 0-521-41261-7 .
^ Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.
^ Hardy & Wright, Thm. 263
^ Hardy & Wright, Thm. 63
^ see references at Jordan's totient function
^ Holden et al. in external links The formula is Gegenbauer's
^ Hardy & Wright, Thm. 288–290
^ Dineva in external links, prop. 4
^ Hardy & Wright, Thm. 264
^ Hardy & Wright, Thm. 296
^ Hardy & Wright, Thm. 278
^ Hardy & Wright, Thm. 386
^ Hardy, Ramanujan , eqs 9.1.2, 9.1.3
^ Koblitz, Ex. III.5.2
^ a b Hardy & Wright, § 20.13
^ Hardy, Ramanujan , § 9.7
^ Hardy, Ramanujan , § 9.13
^ Hardy, Ramanujan , § 9.17
^ Williams, ch. 13; Huard, et al. (external links).
^ a b Ramanujan, On Certain Arithmetical Functions , Table IV; Papers , p. 146
^ a b Koblitz, ex. III.2.8
^ Koblitz, ex. III.2.3
^ Koblitz, ex. III.2.2
^ Koblitz, ex. III.2.4
^ Apostol, Modular Functions ... , Ex. 6.10
^ Apostol, Modular Functions... , Ch. 6 Ex. 10
^ G.H. Hardy, S. Ramannujan, Asymptotic Formulæ in Combinatory Analysis , § 1.3; in Ramannujan, Papers p. 279
^ Landau, p. 168, credits Gauss as well as Dirichlet
^ Cohen, Def. 5.1.2
^ Cohen, Corr. 5.3.13
^ see Edwards, § 9.5 exercises for more complicated formulas.
^ Cohen, Prop 5.3.10
^ See Divisor function .
^ Hardy & Wright, eq. 22.1.2
^ See prime-counting functions .
^ Hardy & Wright, eq. 22.1.1
^ Hardy & Wright, eq. 22.1.3
^ László Tóth, Menon's Identity and Arithmetical Sums ... , eq. 1
^ Tóth, eq. 5
^ Tóth, eq. 3
^ Tóth, eq. 35
^ Tóth, eq. 2
^ Tóth states that Menon proved this for multiplicative f in 1965 and V. Sita Ramaiah for general f .
^ Hardy Ramanujan , eq. 3.10.3
^ Hardy & Wright, § 22.13
^ Hardy & Wright, Thm. 329
^ Hardy & Wright, Thms. 271, 272
^ Hardy & Wright, eq. 16.3.1
^ Ramanujan, Some Formulæ in the Analytic Theory of Numbers , eq. (C); Papers p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.
^ Ramanujan, Some Formulæ in the Analytic Theory of Numbers , eq. (F); Papers p. 134
^ Apostol, Modular Functions ... , ch. 6 eq. 4
^ Apostol, Modular Functions ... , ch. 6 eq. 3
Tom M. Apostol (1976), Introduction to Analytic Number Theory , Springer Undergraduate Texts in Mathematics , ISBN 0-387-90163-9
Apostol, Tom M. (1989), Modular Functions and Dirichlet Series in Number Theory (2nd Edition) , New York: Springer, ISBN 0-387-97127-0
Bateman, Paul T. ; Diamond, Harold G. (2004), Analytic number theory, an introduction , World Scientific , ISBN 978-981-238-938-1
Cohen, Henri (1993), A Course in Computational Algebraic Number Theory , Berlin: Springer , ISBN 3-540-55640-0
Edwards, Harold (1977). Fermat's Last Theorem . New York: Springer . ISBN 0-387-90230-9 .
Hardy, G. H. (1999), Ramanujan: Twelve Lectures on Subjects Suggested by his Life and work , Providence RI: AMS / Chelsea, hdl :10115/1436 , ISBN 978-0-8218-2023-0
Hardy, G. H. ; Wright, E. M. (1979) [1938]. An Introduction to the Theory of Numbers (5th ed.). Oxford: Clarendon Press. ISBN 0-19-853171-0 . MR 0568909 . Zbl 0423.10001 .
Jameson, G. J. O. (2003), The Prime Number Theorem , Cambridge University Press, ISBN 0-521-89110-8
Koblitz, Neal (1984), Introduction to Elliptic Curves and Modular Forms , New York: Springer, ISBN 0-387-97966-2
Landau, Edmund (1966), Elementary Number Theory , New York: Chelsea
William J. LeVeque (1996), Fundamentals of Number Theory , Courier Dover Publications, ISBN 0-486-68906-9
Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company , LCCN 77-171950
Elliott Mendelson (1987), Introduction to Mathematical Logic , CRC Press, ISBN 0-412-80830-7
Nagell, Trygve (1964), Introduction to number theory (2nd Edition) , Chelsea, ISBN 978-0-8218-2833-5
Niven, Ivan M. ; Zuckerman, Herbert S. (1972), An introduction to the theory of numbers (3rd Edition) , John Wiley & Sons , ISBN 0-471-64154-5
Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory , Englewood Cliffs: Prentice Hall , LCCN 77-81766
Ramanujan, Srinivasa (2000), Collected Papers , Providence RI: AMS / Chelsea, ISBN 978-0-8218-2076-6
Williams, Kenneth S. (2011), Number theory in the spirit of Liouville , London Mathematical Society Student Texts, vol. 76, Cambridge: Cambridge University Press , ISBN 978-0-521-17562-3 , Zbl 1227.11002
Schwarz, Wolfgang; Spilker, Jürgen (1994), Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties , London Mathematical Society Lecture Note Series, vol. 184, Cambridge University Press , ISBN 0-521-42725-8 , Zbl 0807.11001
"Arithmetic function" , Encyclopedia of Mathematics , EMS Press , 2001 [1994]
Matthew Holden, Michael Orrison, Michael Varble Yet another Generalization of Euler's Totient Function
Huard, Ou, Spearman, and Williams. Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions
Dineva, Rosica, The Euler Totient, the Möbius, and the Divisor Functions Archived 2021-01-16 at the Wayback Machine
László Tóth, Menon's Identity and arithmetical sums representing functions of several variables
Possessing a specific set of other numbers
Expressible via specific sums