Stochastic process
A realization of Brownian Excursion.
In probability theory a Brownian excursion process is a stochastic process that is closely related to a Wiener process (or Brownian motion ). Realisations of Brownian excursion processes are essentially just realizations of a Wiener process selected to satisfy certain conditions. In particular, a Brownian excursion process is a Wiener process conditioned to be positive and to take the value 0 at time 1. Alternatively, it is a Brownian bridge process conditioned to be positive. BEPs are important because, among other reasons, they naturally arise as the limit process of a number of conditional functional central limit theorems.[ 1]
A Brownian excursion process,
e
{\displaystyle e}
, is a Wiener process (or Brownian motion ) conditioned to be positive and to take the value 0 at time 1. Alternatively, it is a Brownian bridge process conditioned to be positive.
Another representation of a Brownian excursion
e
{\displaystyle e}
in terms of a Brownian motion process W (due to Paul Lévy and noted by Kiyosi Itô and Henry P. McKean, Jr. [ 2] )
is in terms of the last time
τ
−
{\displaystyle \tau _{-}}
that W hits zero before time 1 and the first time
τ
+
{\displaystyle \tau _{+}}
that Brownian motion
W
{\displaystyle W}
hits zero after time 1:[ 2]
{
e
(
t
)
:
0
≤
t
≤
1
}
=
d
{
|
W
(
(
1
−
t
)
τ
−
+
t
τ
+
)
|
τ
+
−
τ
−
:
0
≤
t
≤
1
}
.
{\displaystyle \{e(t):\ {0\leq t\leq 1}\}\ {\stackrel {d}{=}}\ \left\{{\frac {|W((1-t)\tau _{-}+t\tau _{+})|}{\sqrt {\tau _{+}-\tau _{-}}}}:\ 0\leq t\leq 1\right\}.}
Let
τ
m
{\displaystyle \tau _{m}}
be the time that a
Brownian bridge process
W
0
{\displaystyle W_{0}}
achieves its minimum on [0, 1]. Vervaat (1979) shows that
{
e
(
t
)
:
0
≤
t
≤
1
}
=
d
{
W
0
(
τ
m
+
t
mod
1
)
−
W
0
(
τ
m
)
:
0
≤
t
≤
1
}
.
{\displaystyle \{e(t):\ {0\leq t\leq 1}\}\ {\stackrel {d}{=}}\ \left\{W_{0}(\tau _{m}+t{\bmod {1}})-W_{0}(\tau _{m}):\ 0\leq t\leq 1\right\}.}
Vervaat's representation of a Brownian excursion has several consequences for various functions of
e
{\displaystyle e}
. In particular:
M
+
≡
sup
0
≤
t
≤
1
e
(
t
)
=
d
sup
0
≤
t
≤
1
W
0
(
t
)
−
inf
0
≤
t
≤
1
W
0
(
t
)
,
{\displaystyle M_{+}\equiv \sup _{0\leq t\leq 1}e(t)\ {\stackrel {d}{=}}\ \sup _{0\leq t\leq 1}W_{0}(t)-\inf _{0\leq t\leq 1}W_{0}(t),}
(this can also be derived by explicit calculations[ 3] [ 4] ) and
∫
0
1
e
(
t
)
d
t
=
d
∫
0
1
W
0
(
t
)
d
t
−
inf
0
≤
t
≤
1
W
0
(
t
)
.
{\displaystyle \int _{0}^{1}e(t)\,dt\ {\stackrel {d}{=}}\ \int _{0}^{1}W_{0}(t)\,dt-\inf _{0\leq t\leq 1}W_{0}(t).}
The following result holds:[ 5]
E
M
+
=
π
/
2
≈
1.25331
…
,
{\displaystyle EM_{+}={\sqrt {\pi /2}}\approx 1.25331\ldots ,\,}
and the following values for the second moment and variance can be calculated by the exact form of the distribution and density:[ 5]
E
M
+
2
≈
1.64493
…
,
Var
(
M
+
)
≈
0.0741337
…
.
{\displaystyle EM_{+}^{2}\approx 1.64493\ldots \ ,\ \ \operatorname {Var} (M_{+})\approx 0.0741337\ldots .}
Groeneboom (1989), Lemma 4.2 gives an expression for the Laplace transform of (the density) of
∫
0
1
e
(
t
)
d
t
{\displaystyle \int _{0}^{1}e(t)\,dt}
. A formula for a certain double transform of the distribution of this area integral is given by Louchard (1984).
Groeneboom (1983) and Pitman (1983) give decompositions of Brownian motion
W
{\displaystyle W}
in terms of i.i.d Brownian excursions and the least concave majorant (or greatest convex minorant) of
W
{\displaystyle W}
.
For an introduction to Itô's general theory of Brownian excursions and the Itô Poisson process of excursions, see Revuz and Yor (1994), chapter XII.
Connections and applications [ edit ]
The Brownian excursion area
A
+
≡
∫
0
1
e
(
t
)
d
t
{\displaystyle A_{+}\equiv \int _{0}^{1}e(t)\,dt}
arises in connection with the enumeration of connected graphs, many other problems in combinatorial theory; see e.g.[ 6] [ 7] [ 8] [ 9] [ 10] and the limit distribution of the Betti numbers of certain varieties in cohomology theory.[ 11] Takacs (1991a) shows that
A
+
{\displaystyle A_{+}}
has density
f
A
+
(
x
)
=
2
6
x
2
∑
j
=
1
∞
v
j
2
/
3
e
−
v
j
U
(
−
5
6
,
4
3
;
v
j
)
with
v
j
=
2
|
a
j
|
3
27
x
2
{\displaystyle f_{A_{+}}(x)={\frac {2{\sqrt {6}}}{x^{2}}}\sum _{j=1}^{\infty }v_{j}^{2/3}e^{-v_{j}}U\left(-{\frac {5}{6}},{\frac {4}{3}};v_{j}\right)\ \ {\text{ with }}\ \ v_{j}={\frac {2|a_{j}|^{3}}{27x^{2}}}}
where
a
j
{\displaystyle a_{j}}
are the zeros of the Airy function and
U
{\displaystyle U}
is the confluent hypergeometric function .
Janson and Louchard (2007) show that
f
A
+
(
x
)
∼
72
6
π
x
2
e
−
6
x
2
as
x
→
∞
,
{\displaystyle f_{A_{+}}(x)\sim {\frac {72{\sqrt {6}}}{\sqrt {\pi }}}x^{2}e^{-6x^{2}}\ \ {\text{ as }}\ \ x\rightarrow \infty ,}
and
P
(
A
+
>
x
)
∼
6
6
π
x
e
−
6
x
2
as
x
→
∞
.
{\displaystyle P(A_{+}>x)\sim {\frac {6{\sqrt {6}}}{\sqrt {\pi }}}xe^{-6x^{2}}\ \ {\text{ as }}\ \ x\rightarrow \infty .}
They also give higher-order expansions in both cases.
Janson (2007) gives moments of
A
+
{\displaystyle A_{+}}
and many other area functionals. In particular,
E
(
A
+
)
=
1
2
π
2
,
E
(
A
+
2
)
=
5
12
≈
0.416666
…
,
Var
(
A
+
)
=
5
12
−
π
8
≈
.0239675
…
.
{\displaystyle E(A_{+})={\frac {1}{2}}{\sqrt {\frac {\pi }{2}}},\ \ E(A_{+}^{2})={\frac {5}{12}}\approx 0.416666\ldots ,\ \ \operatorname {Var} (A_{+})={\frac {5}{12}}-{\frac {\pi }{8}}\approx .0239675\ldots \ .}
Brownian excursions also arise in connection with
queuing problems,[ 12]
railway traffic,[ 13] [ 14] and the heights of random rooted binary trees.[ 15]
^ Durrett, Iglehart: Functionals of Brownian Meander and Brownian Excursion, (1975)
^ a b Itô and McKean (1974, page 75)
^ Chung (1976)
^ Kennedy (1976)
^ a b Durrett and Iglehart (1977)
^ Wright, E. M. (1977). "The number of connected sparsely edged graphs". Journal of Graph Theory . 1 (4): 317–330. doi :10.1002/jgt.3190010407 .
^ Wright, E. M. (1980). "The number of connected sparsely edged graphs. III. Asymptotic results". Journal of Graph Theory . 4 (4): 393–407. doi :10.1002/jgt.3190040409 .
^ Spencer J (1997). "Enumerating graphs and Brownian motion". Communications on Pure and Applied Mathematics . 50 (3): 291–294. doi :10.1002/(sici)1097-0312(199703)50:3<291::aid-cpa4>3.0.co;2-6 .
^ Janson, Svante (2007). "Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas". Probability Surveys . 4 : 80–145. arXiv :0704.2289 . Bibcode :2007arXiv0704.2289J . doi :10.1214/07-PS104 . S2CID 14563292 .
^ Flajolet, P.; Louchard, G. (2001). "Analytic variations on the Airy distribution". Algorithmica . 31 (3): 361–377. CiteSeerX 10.1.1.27.3450 . doi :10.1007/s00453-001-0056-0 . S2CID 6522038 .
^ Reineke M (2005). "Cohomology of noncommutative Hilbert schemes". Algebras and Representation Theory . 8 (4): 541–561. arXiv :math/0306185 . doi :10.1007/s10468-005-8762-y . S2CID 116587916 .
^ Iglehart D. L. (1974). "Functional central limit theorems for random walks conditioned to stay positive" . The Annals of Probability . 2 (4): 608–619. doi :10.1214/aop/1176996607 .
^ Takacs L (1991a). "A Bernoulli excursion and its various applications". Advances in Applied Probability . 23 (3): 557–585. doi :10.1017/s0001867800023739 .
^ Takacs L (1991b). "On a probability problem connected with railway traffic" . Journal of Applied Mathematics and Stochastic Analysis . 4 : 263–292. doi :10.1155/S1048953391000011 .
^ Takacs L (1994). "On the Total Heights of Random Rooted Binary Trees" . Journal of Combinatorial Theory, Series B . 61 (2): 155–166. doi :10.1006/jctb.1994.1041 .
Chung, K. L. (1975). "Maxima in Brownian excursions" . Bulletin of the American Mathematical Society . 81 (4): 742–745. doi :10.1090/s0002-9904-1975-13852-3 . MR 0373035 .
Chung , K. L. (1976). "Excursions in Brownian motion" . Arkiv för Matematik . 14 (1): 155–177. Bibcode :1976ArM....14..155C . doi :10.1007/bf02385832 . MR 0467948 .
Durrett, Richard T.; Iglehart, Donald L. (1977). "Functionals of Brownian meander and Brownian excursion" . Annals of Probability . 5 (1): 130–135. doi :10.1214/aop/1176995896 . JSTOR 2242808 . MR 0436354 .
Groeneboom, Piet (1983). "The concave majorant of Brownian motion" . Annals of Probability . 11 (4): 1016–1027. doi :10.1214/aop/1176993450 . JSTOR 2243513 . MR 0714964 .
Groeneboom, Piet (1989). "Brownian motion with a parabolic drift and Airy functions" . Probability Theory and Related Fields . 81 : 79–109. doi :10.1007/BF00343738 . MR 0981568 . S2CID 119980629 .
Itô, Kiyosi ; McKean, Jr., Henry P. (2013) [1974]. Diffusion Processes and their Sample Paths . Classics in Mathematics (Second printing, corrected ed.). Springer-Verlag, Berlin. ISBN 978-3540606291 . MR 0345224 .
Janson, Svante (2007). "Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas". Probability Surveys . 4 : 80–145. arXiv :0704.2289 . Bibcode :2007arXiv0704.2289J . doi :10.1214/07-ps104 . MR 2318402 . S2CID 14563292 .
Janson, Svante; Louchard, Guy (2007). "Tail estimates for the Brownian excursion area and other Brownian areas" . Electronic Journal of Probability . 12 : 1600–1632. arXiv :0707.0991 . Bibcode :2007arXiv0707.0991J . doi :10.1214/ejp.v12-471 . MR 2365879 . S2CID 6281609 .
Kennedy, Douglas P. (1976). "The distribution of the maximum Brownian excursion". Journal of Applied Probability . 13 (2): 371–376. doi :10.2307/3212843 . JSTOR 3212843 . MR 0402955 . S2CID 222386970 .
Lévy, Paul (1948). Processus Stochastiques et Mouvement Brownien . Gauthier-Villars, Paris. MR 0029120 .
Louchard, G. (1984). "Kac's formula, Levy's local time and Brownian excursion". Journal of Applied Probability . 21 (3): 479–499. doi :10.2307/3213611 . JSTOR 3213611 . MR 0752014 . S2CID 123640749 .
Pitman, J. W. (1983). "Remarks on the convex minorant of Brownian motion". Seminar on Stochastic Processes, 1982 . Progr. Probab. Statist. Vol. 5. Birkhauser, Boston. pp. 219–227. MR 0733673 .
Revuz, Daniel; Yor, Marc (2004). Continuous Martingales and Brownian Motion . Grundlehren der mathematischen Wissenschaften. Vol. 293. Springer-Verlag, Berlin. doi :10.1007/978-3-662-06400-9 . ISBN 978-3-642-08400-3 . MR 1725357 .
Vervaat, W. (1979). "A relation between Brownian bridge and Brownian excursion" . Annals of Probability . 7 (1): 143–149. doi :10.1214/aop/1176995155 . JSTOR 2242845 . MR 0515820 .