Carbon monoxide-releasing molecules (CORMs) are chemical compounds designed to release controlled amounts of carbon monoxide (CO). CORMs are being developed as potential therapeutic agents to locally deliver CO to cells and tissues, thus overcoming limitations of CO gas inhalation protocols.
CO is best known for its toxicity in carbon monoxide poisoning at high doses. However, CO is a gasotransmitter and supplemental low dosage of CO has been linked to therapeutic benefits. Pre-clinical research has focused on CO's anti-inflammatory activity with significant applications in cardiovascular disease, oncology, transplant surgery, and neuroprotection.[1]
Nickel tetracarbonyl was the first carbonyl-complex used to achieve local delivery of CO and was the first CO delivery molecule suggested to have therapeutic potential in 1891.[2] The acronym CORM was coined in 2002, which marks the first modern biomedical and pharmaceutical initiative.[3] The enzymatic reaction of heme oxygenase inspired the development of synthetic CORMs.
The first synthetic CORMs were typically metal carbonyl complexes. A representative CORM that has been extensively characterized both from a biochemical and pharmacological view point is the ruthenium(II) complex Ru(glycinate)Cl(CO)3, known as CORM-3. Therapeutic data pertaining to metallic CORMs were reappraised to explore if observed effects are due to CO or if metal reactivity mediates physiological effects via thiol depletion, facilitating reduction, ion channel blockage, or redox catalysis.[4][5]
The release of CO from carrier agents can be induced photochemically. These carriers are called photoCORMs and include both metal complexes and metal-free (organic) compounds of various structural motifs classified as a special type of photolabile protecting group.[7]
Enzyme-triggered CORMs (ET-CORMs) have been developed to improve selective local delivery of CO. Some ET-CORM prodrugs are activated by esterase enzymes for site specific liberation of CO.[8]
Methylene chloride was the first organic CORM orally administered based on previous reports of carboxyhemoglobin formation via metabolism. The second organic CORM, CORM-A1 (sodium boranocarbonate), was developed based on a 1960s report of CO release from potassium boranocarbonate.[2]
Based on the synergism of the heme oxygenase system and CO delivery, a molecular hybrid-CORM (HYCO) class emerged consisting of a conjoined HO-1 inducer and CORM species. One such HYCO includes a dimethyl fumarate moiety which activates NRF2 to thereby induce HO-1, whilst the CORM moiety also liberates CO.[10]
Carbon monoxide releasing materials (CORMAs) are novel drug formulations and drug delivery platforms which have emerged to overcome the pharmaceutical limitations of most CORM species.[11] Some CORMA consist of a formulation of micelles prepared from triblock copolymers with a CORM entity, which is triggered for release via addition of cysteine. Other CO-releasing scaffolds include polymers, peptides, silicananoparticles, nanodiamond, magnetic nanoparticles, nanofiber gel, metallodendrimers, and CORM-protein (macromolecule) conjugates.[12][13]
Other advanced drug delivery devices, such as encapsulated CORMs and extracorporeal membrane-inspired technologies, have been developed.[5]
HMOX is the main source of endogenous CO production, though other minor contributors have also been identified.[16] CO is formed at a rate of 16.4 μmol/hour in the human body, ~86% originating from heme via heme oxygenase and ~14% from non-heme sources including: photooxidation, lipid peroxidation, and xenobiotics.[17] The average carboxyhemoglobin (CO-Hb) level in a non-smoker is under 3% CO-Hb (whereas a smoker may reach levels near 10% CO-Hb),[18] though geographic location, occupation, health and behavior are contributing variables.
In the late 1960s Rudi Schmid characterized the enzyme that facilitates the reaction for heme catabolism, thereby identifying the heme oxygenase (HMOX) enzyme.
HMOX is a heme-containing member of the heat shock protein (HSP) family identified as HSP32. Three isoforms of HMOX have been identified to date including the stress-induced HMOX-1 and constitutive HMOX-2. HMOX-1 is considered a cell rescue protein which is induced in response to oxidative stress and numerous disease states. Furthermore, HMOX-1 is induced by countless molecules including statins, hemin, and natural products.[19][20]
CO has approximately 210x greater affinity for hemoglobin than oxygen. The equilibrium dissociation constant for the reaction Hb-CO ⇌ Hb + CO strongly favours the CO complex, thus the release of CO for pulmonary excretion generally takes some time.
CO is considered non-reactive in the body and primarily undergoes pulmonary excretion.[27]
^Alberto R, Motterlini R (May 2007). "Chemistry and biological activities of CO-releasing molecules (CORMs) and transition metal complexes". Dalton Transactions (17): 1651–1660. doi:10.1039/b701992k. PMID17443255.
^Pol O (January 2021). "The role of carbon monoxide, heme oxygenase 1, and the Nrf2 transcription factor in the modulation of chronic pain and their interactions with opioids and cannabinoids". Medicinal Research Reviews. 41 (1): 136–155. doi:10.1002/med.21726. PMID32820550. S2CID221219782.
^ abcHopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, et al. (December 2020). "Role of Carbon Monoxide in Host-Gut Microbiome Communication". Chemical Reviews. 120 (24): 13273–13311. doi:10.1021/acs.chemrev.0c00586. PMID33089988. S2CID224824871.
^Wang R, ed. (2001). Carbon monoxide and cardiovascular functions. review article (first ed.). CRC Press. p. 5. ISBN978-1-4200-4101-9.
^Thom SR (2008). "Chapter 15: Carbon monoxide pathophysiology and treatment". In Neuman TS, Thom SR (eds.). Physiology and medicine of hyperbaric oxygen therapy. review article. pp. 321–347. doi:10.1016/B978-1-4160-3406-3.50020-2. ISBN978-1-4160-3406-3.
^Correa-Costa M, Otterbein LE (2014). "Eat to Heal: Natural Inducers of the Heme Oxygenase-1 System.". In Folkerts G, Garssen J (eds.). Pharma-Nutrition. review article. AAPS Advances in the Pharmaceutical Sciences Series. Vol. 12. Springer, Cham. pp. 243–256. doi:10.1007/978-3-319-06151-1_12. ISBN978-3-319-06150-4.
^Ferrándiz ML, Devesa I (2008). "Inducers of heme oxygenase-1". review article. Current Pharmaceutical Design. 14 (5): 473–486. doi:10.2174/138161208783597399. PMID18289074.
^Breman HJ, Wong RJ, Stevenson DK (30 October 2001). "Chapter 15: Sources, Sinks, and Measurement of Carbon Monoxide". In Wang R (ed.). Carbon Monoxide and Cardiovascular Functions. review article (2nd ed.). CRC Press. ISBN978-0-8493-1041-6.
^Wolff DG (December 1976). "The formation of carbon monoxide during peroxidation of microsomal lipids". primary article. Biochemical and Biophysical Research Communications. 73 (4): 850–857. doi:10.1016/0006-291X(76)90199-6. PMID15625852.
^Nishibayashi H, Omma T, Sato R, Estabrook RW, Okunuki K, Kamen MD, Sekuzu I, eds. (1968). Structure and Function of Cytochromes. review article. University Park Press. pp. 658–665.
^Correia MA, Ortiz de Montellano PR (2005). "Inhibition of cytochrome P450 enzymes". Cytochrome P450. review article. Boston, MA: Springer. pp. 247–322. doi:10.1007/0-387-27447-2_7. ISBN978-0-306-48324-0.
^Wilbur S, Williams M, Williams R, Scinicariello F, Klotzbach JM, Diamond GL, Citra M (2012). "Health Effects". Toxicological Profile for Carbon Monoxide. review article. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. PMID23946966.