Falcon 9 Block 5 , the most prolific active orbital launch system in the world.
This comparison of orbital launch systems lists the attributes of all current and future individual rocket configurations designed to reach orbit. A first list contains rockets that are operational or have attempted an orbital flight attempt as of 2024; a second list includes all upcoming rockets. For the simple list of all conventional launcher families, see: Comparison of orbital launchers families . For the list of predominantly solid-fueled orbital launch systems, see: Comparison of solid-fueled orbital launch systems .
Spacecraft propulsion [ note 1] is any method used to accelerate spacecraft and artificial satellites . Orbital launch systems are rockets and other systems capable of placing payloads into or beyond Earth orbit . All launch vehicle propulsion systems employed to date have been chemical rockets falling into one of three main categories:
Solid-propellant rockets or solid-fuel rockets have a motor that uses solid propellants , typically a mix of powdered fuel and oxidizer held together by a polymer binder and molded into the shape of a hollow cylinder. The cylinder is ignited from the inside and burns radially outward, with the resulting expanding gases and aerosols escaping out via the nozzle.[ note 2]
Liquid-propellant rockets have a motor that feeds liquid propellant(s) into a combustion chamber. Most liquid engines use a bipropellant , consisting of two liquid propellants (fuel and oxidizer) which are stored and handled separately before being mixed and burned inside the combustion chamber.
Hybrid-propellant rockets use a combination of solid and liquid propellant, typically involving a liquid oxidizer being pumped through a hollow cylinder of solid fuel.
All current spacecraft use conventional chemical rockets (solid-fuel or liquid bipropellant) for launch, though some[ note 3] have used air-breathing engines on their first stage .[ note 4]
Orbits legend:
LEO, low Earth orbit
SSO or SSPO, near-polar Sun-synchronous orbit
polar, polar orbit
MEO, medium Earth orbit
GTO, geostationary transfer orbit
GEO, geostationary orbit (direct injection)
HEO, high Earth orbit
HCO, heliocentric orbit
TLI, trans-lunar injection
TMI, trans-Mars injection
^ Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
^ for Starliner [ 9]
^ Despite not being officially acknowledged by the manufacturer, significant changes between different iterations of the rocket lead to the identification of different variants.[ 12]
^ Sea-launched version of the third unofficial iteration of the Ceres-1 launch vehicle.
^ 5,100 kg to a 500-km Sun-synchronous orbit; 3,300 kg to 800 km[ 33] : 64–65
^ Despite not being officially acknowledged by the manufacturer, significant changes between different iterations of the rocket lead to the identification of different variants.[ 37]
^ A suborbital test flight was conducted in March 2012.[ 44]
^ A suborbital test flight was conducted in 2014 (designated LVM-3/CARE ) without the cryogenic upper stage (CUS).[ 87]
^ A suborbital mission was conducted in 2024.
^ Additionally, two suborbital missions were conducted in 2010 and 2011.[ 92]
^ A suborbital test flight succeeded in 2022.
^ A suborbital test flight succeeded in 2016.[ 118]
^ Suborbital test flight in 2004, without Fregat upper stage.[ 120]
Rockets in flight testing [ edit ]
Upcoming launch vehicles
^ Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
^ provides the first stage, including engines
^ Height for uncrewed version
^ Height for crewed version
^ When first stage returned to launch site
^ When first stage returned to launch site
^ Reference altitude 500 km
^ with EUS
^ with EUS and advanced boosters
Launch systems by country [ edit ]
The following chart shows the number of launch systems developed in each country, and broken down by operational status. Rocket variants are not distinguished; i.e., the Atlas V series is only counted once for all its configurations 401–431, 501–551, 552, and N22.
AUS
BRZ
CHN
EUR
ESP
FRA
IND
IRN
ISR
JPN
NKR
NZL
RUS
SKR
TWN
UKR
UK
USA
Operational
In development
Retired
^ There are many different methods. Each mestylethod has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the back/rear of the vehicle at very high speed through a supersonic de Laval nozzle . This sort of engine is called a rocket engine .
^ The first medieval rockets were solid-fuel rockets powered by gunpowder; they were used by the Chinese, Indians, Mongols and Arabs, in warfare as early as the 13th century.
^ Such as the Pegasus rocket and SpaceShipOne .
^ Most satellites have simple reliable chemical thrusters (often monopropellant rockets ) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control . Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north–south stationkeeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall effect thrusters (two different types of electric propulsion) to great success.
^ a b c d e f g h i j Krebs, Gunter. "Angara (cluster)" . Gunter's Space Page . Retrieved 20 July 2024 .
^ a b c Krebs, Gunter. "Angara-1.2" . Gunter's Space Page . Retrieved 20 July 2024 .
^ "Angara-1 to inaugurate new rocket family" . russianspaceweb.com . Retrieved 2023-11-20 .
^ a b c d Lagier, Roland (March 2018). "Ariane 6 User's Manual Issue 1 Revision 0" (PDF) . Arianespace . Archived from the original (PDF) on 11 November 2020. Retrieved 27 May 2018 .
^ a b Lagier, Roland (March 2018). "Ariane 6 User's Manual Issue 2 Revision 0" (PDF) . Arianespace . Retrieved 20 July 2024 .
^ Krebs, Gunter. "Ariane-6" . Gunter's Space Page . Retrieved 20 July 2024 .
^ a b c "Atlas V" . ULA . Retrieved 2023-11-20 .
^ a b "Atlas-5(551) (Atlas-V(551))" . Gunter's Space Page . Retrieved 2023-11-20 .
^ Egan, Barbara [@barbegan13] (15 October 2016). "@torybruno @ulalaunch @baserunner0723 We are calling the config N22. No payload fairing with the Starliner on board" (Tweet ). Archived from the original on 5 December 2022. Retrieved 20 March 2023 – via Twitter .
^ a b Percival, Claire (2022-05-29). "OFT-2 CST-100 Starliner (Uncrewed) | Atlas V N22" . Everyday Astronaut . Retrieved 2023-11-20 .
^ Roulette, Joey (22 December 2019). " 'Bull's-eye' landing in New Mexico for Boeing's Starliner astronaut capsule" . Reuters . Retrieved 22 December 2019 .
^ a b c Krebs, Gunter. "Ceres-1 (Gushenxing-1, GX-1)" . Gunter's Space Page . Retrieved 27 August 2023 .
^ a b c d "Ceres-1" . galactic-energy.cn . Retrieved 2023-11-23 .
^ Kim, Jeongmin (1 June 2023). "North Korea rushed satellite launch after seeing ROK rocket success, Seoul says" . NK News . Retrieved 2 June 2023 .
^ "Chollima-1" . Gunter's Space Page . Retrieved 2023-11-23 .
^ "Electron" . Rocket Lab . Retrieved 2023-11-23 .
^ "Rocket Lab Increases Electron Payload Capacity, Enabling Interplanetary Missions and Reusability" . Rocket Lab . Retrieved 23 July 2024 .
^ "Completed Missions" . Rocket Lab . Retrieved 2022-03-09 .
^ a b "Projects&Products" . IHI Aerospace . Archived from the original on 6 April 2011. Retrieved 8 March 2011 .
^ a b c d Krebs, Gunter. "Epsilon" . Gunter's Space Page . Retrieved 18 January 2019 .
^ a b c d e "SpaceX - Falcon 9" . SpaceX. Retrieved 23 July 2024 .
^ Elon Musk (26 February 2024). "Due to continued design improvements, this Falcon 9 carried its highest ever payload of 17.5 tons of useful load to a useful orbit" .
^ Either 2 or 3 boosters recoverable.
^ Musk, Elon. Making Life Multiplanetary . SpaceX. Event occurs at 15:35. Archived from the original on 2021-12-12. Retrieved 22 March 2018 – via YouTube. BFR in fully reusable configuration, without any orbital refueling, we expect to have a payload capability of 150 tonnes to low Earth orbit and that compares to about 30 for Falcon Heavy
^ Krebs, Gunter. "Falcon-Heavy (Block 5)" . Gunter's Space Page . Retrieved 23 July 2024 .
^ a b c d "SpaceX - Falcon Heavy" . SpaceX. Retrieved 24 July 2024 .
^ a b "Alpha Launch Vehicle" . Firefly Aerospace . Retrieved 2023-11-26 .
^ "Missions Archive" . Firefly Aerospace . Retrieved 2023-11-26 .
^ a b c Krebs, Gunter. "Yinli-1 (Gravity-1, YL-1)" . Gunter's Space Page . Retrieved 11 January 2024 .
^ a b "Indian Space Research Organisation - Geosynchronous Satellite Launch Vehicle Mark II" . isro.gov.in . Retrieved 2023-11-26 .
^ Krebs, Gunter. "GSLV" . Gunter's Space Page . Retrieved 19 December 2018 .
^ a b "H-IIA Launch Vehicle" (PDF) . JAXA. Retrieved 29 July 2024 .
^ "H-IIA – User's Manual" (PDF) . 4.0. Mitsubishi Heavy Industries , MHI Launch Services. February 2015. YET04001. Retrieved 4 September 2018 .
^ Krebs, Gunter. "H-2A-202" . Gunter's Space Page . Retrieved 29 July 2024 .
^ a b c Only the X00 version of the H3 is intended for LEO launches.[failed verification ] The higher capability X02 and X03 variants could presumably launch significantly more payload to LEO, but are not specified for this mission. Space Launch Report: H3 Data Sheet [usurped] ,[dead link ] retrieved 20 Feb. 2019/
^ Krebs, Gunter. "H-3-22" . Gunter's Space Page . Retrieved 29 July 2024 .
^ Krebs, Gunter. "Shuang Quxian-1 (SQX-1, Hyperbola-1)" . Gunter's Space Page . Retrieved 28 August 2023 .
^ "Hyperbola-1 User Manual" (PDF) . i-space. Retrieved 29 July 2024 .
^ a b "Shuang Quxian-1 (SQX-1, Hyperbola-1)" . Gunter's Space Page . Retrieved 2023-11-27 .
^ "China's Jielong 1 smallsat launcher successful on first flight – Spaceflight Now" . Retrieved 2023-11-27 .
^ Krebs, Gunter. "Jielong-1 (Smart Dragon-1, SD 1)" . Gunter's Space Page . Retrieved 2 November 2019 .
^ a b Krebs, Gunter. "Jielong-3 (Smart Dragon-3, SD 3)" . Gunter's Space Page . Retrieved 9 December 2022 .
^ a b c Krebs, Gunter. "Lijian-1 (Kinetica-1, Zhongke-1, ZK-1)" . Gunter's Space Page . Retrieved 29 July 2024 .
^ a b c Krebs, Gunter. "Kuaizhou-1 (KZ-1) / Fei Tian 1" . Gunter's Space Page . Retrieved 29 July 2024 .
^ a b Andrew Jones (2022-12-07). "Private Chinese rocket reaches orbit 2 years after test-flight failure (video)" . Space.com . Retrieved 2023-11-27 .
^ Krebs, Gunter. "Kuaizhou-11 (KZ-11)" . Gunter's Space Page . Retrieved 29 July 2024 .
^ a b c "LM-2C – Launch Vehicle – CGWIC" . cgwic.com . Archived from the original on 2015-08-13. Retrieved 2023-12-04 .
^ a b Krebs, Gunter. "CZ-2C (3) YZ-1S (Chang Zheng-2C (3) YZ-1S)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ "长征二号丁 _中国航天科技集团" . spacechina.com . Retrieved 2024-05-07 .
^ "LM-2D – Launch Vehicle – CGWIC" . cgwic.com . Archived from the original on 2017-07-21. Retrieved 2023-12-04 .
^ Krebs, Gunter. "CZ-2D (Chang Zheng-2D)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-2D (2) (Chang Zheng-2D (2))" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-2D (2) YZ-3 (Chang Zheng-2D (2) YZ-3)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ "China_Orbital_Launch_Activity_2020.pdf" (PDF) . docs.google.com . Retrieved 2023-12-04 .
^ Krebs, Gunter. "CZ-2F (Chang Zheng-2F)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-2F/G (Chang Zheng-2F/G)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-2F/T (Chang Zheng-2F/T)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b c d Krebs, Gunter. "CZ-3A (Chang Zheng-3A)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b c d e Krebs, Gunter. "CZ-3 (Chang Zheng-3)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-3B/G3Z (Chang Zheng-3B/G3Z)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b c Krebs, Gunter. "CZ-3C/G2 (Chang Zheng-3C/G2)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-3C (Chang Zheng-3C)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-3C/G3Z (Chang Zheng-3C/G3Z)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b c d Krebs, Gunter. "CZ-4B (Chang Zheng-4B)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b c d Krebs, Gunter. "CZ-4C (Chang Zheng-4C)" . Gunter's Space Page . Retrieved 16 August 2018 .
^ a b "LM-5 – Launch Vehicle – CGWIC" . cgwic.com . Retrieved 11 August 2024 .
^ a b Krebs, Gunter. "CZ-5 (Chang Zheng-5)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Jones, Andrew (17 July 2020). "Long March 5 rolled out for July 23 launch of China's Tianwen-1 Mars mission" . SpaceNews . Retrieved 11 August 2024 .
^ a b Krebs, Gunter. "CZ-5/YZ2 (Chang Zheng-5/YZ2)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b Krebs, Gunter. "CZ-5B (Chang Zheng-5B)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b c Krebs, Gunter. "CZ-6 (Chang Zheng-6)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ "Long March 6A" . Retrieved 7 May 2024 .
^ a b Krebs, Gunter. "CZ-6A (Chang Zheng-6A)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Jones, Andrew (7 May 2024). "China launches first Long March 6C rocket" . SpaceNews . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-6 (Chang Zheng-6)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ "LM-7 – Launch Vehicle – CGWIC" . cgwic.com . Retrieved 11 August 2024 .
^ a b Volosín, Juan I. Morales (15 January 2024). "Tianzhou-7 | Long March 7" . Everyday Astronaut . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-7 (Chang Zheng-7)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-7/YZ1A (Chang Zheng-7/YZ1A)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-7A (Chang Zheng-7A)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b "Long March 8" . sat.huijiwiki.com . Retrieved 25 March 2024 .
^ a b c d Krebs, Gunter. "CZ-8 (Chang Zheng-8)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ Krebs, Gunter. "CZ-8 (Chang Zheng-8)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ a b c d e f Krebs, Gunter. "CZ-11 (Chang Zheng-11)" . Gunter's Space Page . Retrieved 5 October 2021 .
^ a b "Indian Space Research Organisation" . isro.gov.in . Retrieved 11 August 2024 .
^ Kerbs, Gunter. "GSLV Mk.3 (LVM-3)" . Gunter's Space Page . Retrieved 11 August 2024 .
^ "Crew module Atmospheric Re-entry Experiment (CARE)" . ISRO . 18 December 2014. Archived from the original on 25 September 2020. Retrieved 4 September 2018 .
^ a b c Krebs, Gunter. "Taurus-3210 (Taurus-XL) / Minotaur-C-XL-3210" . Gunter's Space Page . Retrieved 25 August 2024 .
^ a b "MINOTAUR I Space Launch Vehicle" (PDF) . northropgrumman . Northrop Grumman Corporation. Retrieved 25 August 2024 .
^ a b Krebs, Gunter. "Minotaur-1 (OSP-SLV)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ a b c Krebs, Gunter. "Minotaur-4 (Minotaur-IV, OSP-2 Peacekeeper SLV)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ Krebs, Gunter. "Minotaur-4-Lite (OSP-2 Peacekeeper SLV)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ Krebs, Gunter. "Minotaur-4 HAPS (Minotaur-IV HAPS, OSP-2 Peacekeeper SLV)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ Krebs, Gunter. "Minotaur-4 Orion-38 (Minotaur-IV Orion-38, OSP-2 Peacekeeper SLV)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ a b c Krebs, Gunter. "Minotaur-4+ (Minotaur-IV, OSP-2 Peacekeeper SLV)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ a b c Krebs, Gunter. "Minotaur-5 (Minotaur-V, OSP-2 Peacekeeper SLV)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ a b 동아사이언스 (2022-12-04). "누리호 탑재 중량 1.5t→1.9t으로 성능 '업' " . m.dongascience.com (in Korean). Retrieved 2023-07-12 .
^ Krebs, Gunter. "Nuri (KSLV-2)" . Gunter's Space Page . Retrieved 25 August 2024 .
^ a b c d Krebs, Gunter. "Pegasus-XL" . Gunter's Space Page . Retrieved 27 August 2024 .
^ "PEGASUS Patented Air Launch System" (PDF) . northropgrumman . Northrop Grumman. Retrieved 27 August 2024 .
^ a b Krebs, Gunter. "Pegasus-XL HAPS" . Gunter's Space Page . Retrieved 27 August 2024 .
^ a b "Proton-M" . nextspaceflight.com . Retrieved 27 August 2024 .
^ Krebs, Gunter. "Proton-M" . Gunter's Space Page . Retrieved 27 August 2024 .
^ a b c Krebs, Gunter. "Proton-K & -M Briz-M" . Gunter's Space Page . Retrieved 27 August 2024 .
^ Krebs, Gunter. "Proton (UR-500) Family" . Gunter's Space Page . Retrieved 27 August 2024 .
^ Krebs, Gunter. "Proton-M Blok-DM-03" . Gunter's Space Page . Retrieved 27 August 2024 .
^ a b c Krebs, Gunter. "PSLV-CA (2)" . Gunter's Space Page . Retrieved 27 August 2024 .
^ Krebs, Gunter. "PSLV-CA" . Gunter's Space Page . Retrieved 27 August 2024 .
^ a b Krebs, Gunter. "PSLV" . Gunter's Space Page . Retrieved 27 August 2024 .
^ Krebs, Gunter. "PSLV-DL" . Gunter's Space Page . Retrieved 27 August 2024 .
^ Krebs, Gunter. "PSLV-QL" . Gunter's Space Page . Retrieved 27 August 2024 .
^ a b c d Krebs, Gunter. "PSLV-XL" . Gunter's Space Page . Retrieved 27 August 2024 .
^ Arunan, S.; Satish, R. (25 September 2015). "Mars Orbiter Mission spacecraft and its challenges" . Current Science . 109 (6): 1061–1069. doi :10.18520/v109/i6/1061-1069 .
^ a b Krebs, Gunter. "Qaem-100" . Gunter's Space Page . Retrieved 27 August 2024 .
^ a b Krebs, Gunter. "Qased" . Gunter's Space Page . Retrieved 27 August 2024 .
^ Davenport, Justin (29 March 2023). "Israeli Shavit-2 successfully launches Ofek 13 military satellite" . NASASpaceFlight.com . Retrieved 31 August 2024 .
^ Krebs, Gunter. "Shavit-2" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b c Krebs, Gunter. "Simorgh (Safir-2)" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b "SOYUZ-2 Launch Vehicle" . en.samspace.ru . Retrieved 31 August 2024 .
^ a b Krebs, Gunter. "Soyuz-2-1a (14A14)" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b Krebs, Gunter. "Soyuz-2-1a Fregat" . Gunter's Space Page . Retrieved 31 August 2024 .
^ Krebs, Gunter. "Soyuz-2-1a Volga" . Gunter's Space Page . Retrieved 31 August 2024 .
^ Krebs, Gunter. "Soyuz-2-1b" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b c d Krebs, Gunter. "Soyuz-2-1b Fregat" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b c Krebs, Gunter. "Soyuz-2-1v (Soyuz-1)" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b Krebs, Gunter. "Soyuz-2-1v Volga (Soyuz-1 Volga)" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b "NASA's Space Launch System Reference Guide (Web Version)" (PDF) . nasa.gov . National Aeronautics and Space Administration. p. 8. Retrieved 31 August 2024 .
^ Krebs, Gunter. "SLS" . Gunter's Space Page . Retrieved 31 August 2024 .
^ "Indian Space Research Organisation" . isro.gov.in . Indian Space Research Organisation. Retrieved 31 August 2024 .
^ a b Krebs, Gunter. "SSLV" . Gunter's Space Page . Retrieved 31 August 2024 .
^ a b c Krebs, Gunter. "Tianlong-2" . Gunter's Space Page . Retrieved 3 September 2024 .
^ a b "Vega C" . arianespace.com . Arianespace. Retrieved 3 September 2024 .
^ "Vega C user's manual, Issue 0, Revision 0" (PDF) . arianespace.com . Arianespace. May 2018. p. 42. Retrieved 3 September 2024 .
^ Krebs, Gunter. "Vega-C" . Gunter's Space Page . Retrieved 3 September 2024 .
^ Beil, Adrian (8 December 2023). "ZhuQue-2 launches on third flight" . NASASpaceFlight.com . Retrieved 3 September 2024 .
^ a b c Krebs, Gunter. "Zhuque-2 (ZQ-2, LandSpace-2, LS-2)" . Gunter's Space Page . Retrieved 3 September 2024 .
^ a b "Starship" . SpaceX . Archived from the original on 30 September 2019. Retrieved 1 October 2019 .
^ a b c d e f g h SpaceX [@SpaceX] (April 6, 2024). "At Starbase, @ElonMusk provided an update on the company's plans to send humanity to Mars, the best destination to begin making life multiplanetary" (Tweet ). Archived from the original on 6 April 2024 – via Twitter .
^ a b "South Korean ADD Solid-Fuel SLV" . nextspaceflight.com . Retrieved 31 August 2024 .
^ a b "Launch Vehicle" . Space One. Retrieved 2 January 2024 .
^ Krebs, Gunter. "KAIROS" . Gunter's Space Page . Retrieved 29 July 2024 .
^ a b " "북한, 6개월만에 누리호와 같은 계열 엔진" " . 문화일보 (in Korean). Retrieved 2024-06-04 .
^ Krebs, Gunter. "North Korean Kerolox Launch Vehicle" . Gunter's Space Page . Retrieved 25 August 2024 .
^ a b c "Vulcan" . ULA . Retrieved 3 September 2024 .
^ Krebs, Gunter. "Vulcan Centaur VC2S / Vulcan Centaur VC2L" . Gunter's Space Page . Retrieved 3 September 2024 .
^ "Angara-A5V (Angara-5V) launch vehicle" . russianspaceweb.com . Retrieved 2024-06-03 .
^ "Antares" . nextspaceflight.com . Retrieved 2024-03-28 .[permanent dead link ]
^ Davenport, Justin (2023-08-09). "Northrop Grumman and Firefly's Antares 330 and MLV plans take shape" . NASASpaceFlight.com . Retrieved 2024-08-30 .
^ Clark, Stephen (2024-07-10). "Europe's first Ariane 6 flight achieved most of its goals, but ended prematurely" . Ars Technica . Retrieved 2024-08-30 .
^ a b "Mission – Perigee" . perigee.space . Retrieved 2023-12-18 .
^ Blue Whale 1 Sea Launch Animation . Retrieved 2024-03-28 – via YouTube.
^ "Mission – Perigee" . perigee.space . Retrieved 2024-08-30 .
^ a b Boucher, Marc (14 March 2017). "Exclusive: Maritime Launch Services Selects Nova Scotia Site for Spaceport Over 13 Other Locations" . SpaceQ . Retrieved 18 March 2017 .
^ Krebs, Gunter. "Tsiklon-4M (Cyclone-4M)" . Gunter's Space Page . Retrieved 11 April 2017 .
^ "Precious Payload allies with Maritime Launch + adds Canada's 1st commercial spaceport to the Launch.ctrl marketplace for smallsat interests – SatNews" . news.satnews.com . Retrieved 2022-12-29 .
^ a b Space, Vaya (2024-03-20). "Vaya Space Announces Strategic Partnership with All Points' Space Prep Launch Support Program" . Vaya Space . Retrieved 2024-03-28 .
^ Zisk, Rachael (2024-03-11). "Phantom Raises a Bridge Round" . Payload . Retrieved 2024-03-15 .
^ "LOTUSat-1 (JV-LOTUSat)" . eoportal.org . Retrieved 2024-08-30 .
^ "LAUNCH" . Gilmour Space . Retrieved 2021-05-29 .
^ Gilmour Space [@GilmourSpace] (5 December 2023). "** LAUNCH UPDATE: With end of year fast-approaching and launch approvals still pending, Test Flight 1 will now attempt first orbital launch in 2024. **" (Tweet ). Retrieved 5 December 2023 – via Twitter .
^ Jones, Andrew (2023-04-28). "Orienspace of China targets first launch in second half of the year" . SpaceNews . Retrieved 2024-08-30 .
^ "INNOSPACE HANBIT – Nano" . 이노스페이스 (in Korean). Retrieved 2024-03-28 .
^ "INNOSPACE Signs Agreements on HANBIT-Nano Rocket to Launch Brazilian Satellites and Inertial System" . Yahoo Finance . 2024-05-30. Retrieved 2024-08-30 .
^ Jones, Andrew (2 November 2023). "China's iSpace launches and lands rocket test stage" . spacenews.com. Retrieved 2 November 2023 .
^ "HTV-X 1, 2, 3 (Kotonotori 1, 2, 3)" . Gunter's Space Page . Retrieved 2024-08-30 .
^ a b Jones, Andrew (28 June 2021). "China's super heavy rocket to construct space-based solar power station" . Retrieved 8 January 2022 .
^ Jones, Andrew (5 July 2018). "China reveals details for super-heavy-lift Long March 9 and reusable Long March 8 rockets" . SpaceNews . Retrieved 4 September 2018 .
^ Enthusiast, Space (2023-12-14). "Long March 9: China's Super-Heavy Ambitions" . Orbital Today . Retrieved 2024-08-30 .
^ Jones, Andrew (2024-07-18). "China prepares to launch new Long March 12 rocket" . SpaceNews . Retrieved 2024-08-30 .
^ Parsonson, Andrew (2024-01-10). "ArianeGroup to Increase MaiaSpace Investment to €125M" . European Spaceflight . Retrieved 2024-08-30 .
^ Pinedo, Emma (20 October 2023). "Spain's PLD Space expects first orbital launch in Q1 2026 from French Guiana" . Reuters . Retrieved 5 December 2023 .
^ "Medium Launch Vehicle" . Firefly Aerospace . Retrieved 7 August 2024 .
^ Foust, Jeff (7 August 2024). "Firefly signs multi-launch agreement with L3Harris" . SpaceNews . Retrieved 7 August 2024 . Representatives of Firefly and Northrop said they expected the first flight of MLV to take place in the second half of 2026.
^ a b c d e f Bell, Adrian (18 April 2024). "China Roundup: ZhuQue-3 moves left, Tianlong-3 gets engines, and Chang Zheng rockets launch" . nasaspaceflight . Retrieved 18 April 2024 .
^ "Rocket Lab pushes back Neutron debut to 2025" . spacenews.com . 2024-05-07. Retrieved 2024-05-29 .
^ Foust, Jeff (8 March 2017). "Eutelsat first customer for Blue Origin's New Glenn" . SpaceNews . Retrieved 8 March 2017 .
^ Samantha Mathewson (2024-08-29). "Blue Origin's powerful New Glenn rocket to debut Oct. 13 with NASA Mars launch" . Space.com . Retrieved 2024-08-30 .
^ "Interview. Bordeaux : après des essais dans leur jardin, ils vont lancer leur fusée dans l'espace" . actu.fr (in French). 2023-05-04. Retrieved 2023-11-21 .
^ China 'N Asia Spaceflight 🚀🛰️🙏 [@CNSpaceflight] (9 January 2023). "GAPACTIC-ENERGY's another important goal is to develop the reusable kerosene fueled rocket PALLAS-1, which is now targeted in 2024 for first launch https://t.co/TMrTZ6ZD8D https://t.co/xPKe0mVIBB" (Tweet ). Archived from the original on 11 January 2023. Retrieved 20 March 2023 – via Twitter .
^ Foust, Jeff (18 July 2018). "Orbex stakes claim to European smallsat launch market" . SpaceNews . Retrieved 4 September 2018 .
^ Dorsey, Kristy (1 May 2024). "New Orbex chief hints at Sutherland launch next year" . The Herald . Retrieved 1 July 2024 .
^ a b "LAUNCHER – Rocket Factory Augsburg" . Retrieved 2021-09-18 .
^ Rainbow, Jason (23 August 2024). "RFA pushes maiden flight to 2025 after launchpad explosion" . SpaceNews . Retrieved 24 August 2024 .
^ "Russia's Rokot-M carrier rocket to be launched in 2024 — Khrunichev Center" . TASS . Retrieved 2024-08-30 .
^ "Skyrora XL Rocket | Skyrora" . skyrora.com . Retrieved 2022-08-19 .
^ Thompson, Alan (13–14 May 2024). Skyrora - ICAO (PDF) . Workshop on New Entrants Integration in the NAT Region (2024). Paris : ICAO . p. 5. Retrieved 24 August 2024 .
^ "GYUB (South Korean Solid Fueled LV)" . Gunter's Space Page . Retrieved 2024-03-28 .
^ "South Korean ADD Solid-Fuel SLV" . nextspaceflight.com . Retrieved 2024-06-02 .
^ "Space Launch System" (PDF) . NASA Facts. NASA . 11 October 2017. FS-2017-09-92-MSFC. Archived from the original (PDF) on 24 December 2018. Retrieved 4 September 2018 .
^ a b Harbaugh, Jennifer (9 July 2018). "The Great Escape: SLS Provides Power for Missions to the Moon" . NASA . Archived from the original on 11 December 2019. Retrieved 4 September 2018 .
^ Creech, Stephen (April 2014). "NASA's Space Launch System: A Capability for Deep Space Exploration" (PDF) . NASA . p. 2. Archived from the original (PDF) on 7 March 2016. Retrieved 4 September 2018 .
^ Zak, Anatoly (7 August 2017). "Preliminary design for Soyuz-5 races to completion" . Russian Space Web . Retrieved 2 September 2018 .
^ "First launch of Soyuz-5 rocket due Dec 24, 2025" . TASS. 17 August 2023. Retrieved 18 August 2023 .
^ a b Berger, Eric (7 October 2020). "Russian space corporation unveils planned "Amur" rocket—and it looks familiar" . Ars Technica . Retrieved 7 October 2020 .
^ a b "Spectrum" . Isar Aerospace . Retrieved 2022-03-05 .
^ Jones, Andrew (2023-11-03). "Norway opens Andøya spaceport" . SpaceNews . Retrieved 2024-01-02 .
^ a b SpaceX [@SpaceX] (June 6, 2024). "Watch Starship's fourth flight test" (Tweet ) – via Twitter . {{cite web }}
: CS1 maint: url-status (link )
^ a b "Relativity Space Shares Updated Go-to-Market Approach for Terran R, Taking Aim at Medium to Heavy Payload Category with Next-Generation Rocket" . Relativity Space (Press release). 12 April 2023. Retrieved 12 April 2023 .
^ "Vega E: M10 motor / Mira" . Avio . Archived from the original on 19 April 2019. Retrieved 7 June 2018 .
^ a b c "Launch Vehicle" . Skyroot Aerospace . 2019-01-10. Archived from the original on 2020-12-15. Retrieved 2019-04-21 .
^ "Skyroot Aerospace" . Skyroot Aerospace . Retrieved 2019-04-21 .
^ "Skyroot Aerospace Nears Historic Launch with Successful Vikram-1 Stage-1 Test" . Financialexpress . 2024-07-10. Retrieved 2024-08-30 .
^ "Vulcan Centaur VC4S / Vulcan Centaur VC4L" . Gunter's Space Page . Retrieved 2024-08-30 .
^ a b "Rocket Rundown – A Fleet Overview" (PDF) . ULA . November 2019. Retrieved April 14, 2020 .
^ Jones, Andrew (9 December 2023). "Landspace launches third methane Zhuque-2, targets 2025 launch of new stainless steel rocket" . spacenews.com . Retrieved 2023-12-09 .
^ Axe, David. "Iran's New Space Rocket Could Double As A Nuclear Missile" . Forbes . Retrieved 2021-03-08 .
Current In development Retired Classes
This Template lists historical, current, and future space rockets that at least once attempted (but not necessarily succeeded in) an orbital launch or that are planned to attempt such a launch in the future
Symbol † indicates past or current rockets that attempted orbital launches but never succeeded (never did or has yet to perform a successful orbital launch)