Creatine was first identified in 1832 when Michel Eugène Chevreul isolated it from the basified water-extract of skeletal muscle. He later named the crystallized precipitate after the Greek word for meat, κρέας (kreas). In 1928, creatine was shown to exist in equilibrium with creatinine.[3] Studies in the 1920s showed that consumption of large amounts of creatine did not result in its excretion. This result pointed to the ability of the body to store creatine, which in turn suggested its use as a dietary supplement.[4]
In 1912, Harvard University researchers Otto Folin and Willey Glover Denis found evidence that ingesting creatine can dramatically boost the creatine content of the muscle.[5][6] In the late 1920s, after finding that the intramuscular stores of creatine can be increased by ingesting creatine in larger than normal amounts, scientists discovered phosphocreatine (creatine phosphate), and determined that creatine is a key player in the metabolism of skeletal muscle. It is naturally formed in vertebrates.[7]
The discovery of phosphocreatine[8][9] was reported in 1927.[10][11][9] In the 1960s, creatine kinase (CK) was shown to phosphorylate ADP using phosphocreatine (PCr) to generate ATP. It follows that ATP - not PCr - is directly consumed in muscle contraction. CK uses creatine to "buffer" the ATP/ADP ratio.[12]
While creatine's influence on physical performance has been well documented since the early twentieth century, it came into public view following the 1992 Olympics in Barcelona. An August 7, 1992 article in The Times reported that Linford Christie, the gold medal winner at 100 meters, had used creatine before the Olympics (however, it should also be noted that Christie was found guilty of doping later in his career).[13] An article in Bodybuilding Monthly named Sally Gunnell, who was the gold medalist in the 400-meter hurdles, as another creatine user. In addition, The Times also noted that 100 meter hurdler Colin Jackson began taking creatine before the Olympics.[14][15]
At the time, low-potency creatine supplements were available in Britain, but creatine supplements designed for strength enhancement were not commercially available until 1993 when a company called Experimental and Applied Sciences (EAS) introduced the compound to the sports nutrition market under the name Phosphagen.[16] Research performed thereafter demonstrated that the consumption of high glycemic carbohydrates in conjunction with creatine increases creatine muscle stores.[17]
Creatine is a naturally occurring non-protein compound and the primary constituent of phosphocreatine, which is used to regenerate ATP within the cell. 95% of the human body's total creatine and phosphocreatine stores are found in skeletal muscle, while the remainder is distributed in the blood, brain, testes, and other tissues.[18][19] The typical creatine content of skeletal muscle (as both creatine and phosphocreatine) is 120 mmol per kilogram of dry muscle mass, but can reach up to 160 mmol/kg through supplementation.[20] Approximately 1–2% of intramuscular creatine is degraded per day and an individual would need about 1–3 grams of creatine per day to maintain average (unsupplemented) creatine storage.[20][21][22] An omnivorous diet provides roughly half of this value, with the remainder synthesized in the liver and kidneys.[18][19][23]
Creatine is transported through the blood and taken up by tissues with high energy demands, such as the brain and skeletal muscle, through an active transport system. The concentration of ATP in skeletal muscle is usually 2–5 mM, which would result in a muscle contraction of only a few seconds.[25] During times of increased energy demands, the phosphagen (or ATP/PCr) system rapidly resynthesizes ATP from ADP with the use of phosphocreatine (PCr) through a reversible reaction catalysed by the enzyme creatine kinase (CK). The phosphate group is attached to an NH center of the creatine. In skeletal muscle, PCr concentrations may reach 20–35 mM or more. Additionally, in most muscles, the ATP regeneration capacity of CK is very high and is therefore not a limiting factor. Although the cellular concentrations of ATP are small, changes are difficult to detect because ATP is continuously and efficiently replenished from the large pools of PCr and CK.[25] A proposed representation has been illustrated by Krieder et al.[26] Creatine has the ability to increase muscle stores of PCr, potentially increasing the muscle's ability to resynthesize ATP from ADP to meet increased energy demands.[27][28][29]
Creatine supplementation appears to increase the number of myonuclei that satellite cells will 'donate' to damaged muscle fibers, which increases the potential for growth of those fibers. This increase in myonuclei probably stems from creatine's ability to increase levels of the myogenic transcription factor MRF4.[30]
Vegan and vegetatian diets are associated with lower levels of muscle creatine, and athletes on these diets may benefit from creatine supplementation.[33]
Most of the research to-date on creatine has predominantly focused on the pharmacological properties of creatine, yet there is a lack of research into the pharmacokinetics of creatine. Studies have not established pharmacokinetic parameters for clinical usage of creatine such as volume of distribution, clearance, bioavailability, mean residence time, absorption rate, and half life. A clear pharmacokinetic profile would need to be established prior to optimal clinical dosing.[34]
An approximation of 0.3 g/kg/day divided into 4 equal spaced intervals has been suggested since creatine needs may vary based on body weight.[26][20] It has also been shown that taking a lower dose of 3 grams a day for 28 days can also increase total muscle creatine storage to the same amount as the rapid loading dose of 20 g/day for 6 days.[20] However, a 28-day loading phase does not allow for ergogenic benefits of creatine supplementation to be realized until fully saturated muscle storage.
This elevation in muscle creatine storage has been correlated with ergogenic benefits discussed in the research section. However, higher doses for longer periods of time are being studied to offset creatine synthesis deficiencies and mitigating diseases.[35][36][32]
After the 5–7 day loading phase, muscle creatine stores are fully saturated and supplementation only needs to cover the amount of creatine broken down per day. This maintenance dose was originally reported to be around 2–3 g/day (or 0.03 g/kg/day),[20] however, some studies have suggested 3–5 g/day maintenance dose to maintain saturated muscle creatine.[17][22][37][38]
Endogenous serum or plasma creatine concentrations in healthy adults are normally in a range of 2–12 mg/L. A single 5 gram (5000 mg) oral dose in healthy adults results in a peak plasma creatine level of approximately 120 mg/L at 1–2 hours post-ingestion. Creatine has a fairly short elimination half life, averaging just less than 3 hours, so to maintain an elevated plasma level it would be necessary to take small oral doses every 3–6 hours throughout the day.
Creatine supplementation for sporting performance enhancement is considered safe for short-term use but there is a lack of safety data for long term use, or for use in children and adolescents.[41]
A 2018 review article in the Journal of the International Society of Sports Nutrition said that creatine monohydrate might help with energy availability for high-intensity exercise.[42]
Creatine use can increase maximum power and performance in high-intensity anaerobic repetitive work (periods of work and rest) by 5% to 15%.[43][44][45] Creatine has no significant effect on aerobic endurance, though it will increase power during short sessions of high-intensity aerobic exercise.[46][obsolete source][47][obsolete source]
Creatine is proven to boost the recovery and work capacity of an athlete, and multi-applicable capabilities upon athletes have given it a lot of interest over the course of the past decade. A survey of 21,000 college athletes showed that 14% of athletes take creatine supplements to try to improve performance.[48] Compared to normal athletes, those with creatine supplementation have been shown to produce better athletic performance.[49] Non-athletes report taking creatine supplements to improve appearance.[48]
Creatine is sometimes reported to have a beneficial effect on brain function and cognitive processing, although the evidence is difficult to interpret systematically and the appropriate dosing is unknown.[50][51] The greatest effect appears to be in individuals who are stressed (due, for instance, to sleep deprivation) or cognitively impaired.[50][51][52]
A 2018 systematic review found that "generally, there was evidence that short term memory and intelligence/reasoning may be improved by creatine administration", whereas for other cognitive domains "the results were conflicting".[53] Another 2023 review initially found evidence of improved memory function.[54] However, it was later determined that faulty statistics lead to the statistical significance and after fixing the "double counting", the effect was only significant in older adults.[55]
A 2023 review study "...supported claims that creatine supplementation can increases [sic] brain creatine content but also demonstrated somewhat equivocal results for effects on cognition. It does, however, provide evidence to suggest that more research is required with stressed populations, as supplementation does appear to significantly affect brain content.[56]
A meta-analysis found that creatine treatment increased muscle strength in muscular dystrophies, and potentially improved functional performance.[57] Creatine treatment does not appear to improve muscle strength in people who have metabolic myopathies.[57] High doses of creatine lead to increased muscle pain and an impairment in activities of daily living when taken by people who have McArdle disease.[57]
According to a clinical study focusing on people with various muscular dystrophies, using a pure form of creatine monohydrate can be beneficial in rehabilitation after injuries and immobilization.[58]
Creatine's impact on mitochondrial function has led to research on its efficacy and safety for slowing Parkinson's disease. As of 2014, the evidence did not provide a reliable foundation for treatment decisions, due to risk of bias, small sample sizes, and the short duration of trials.[59]
A 2021 systemic review of studies found that "the current body of evidence does not indicate that creatine supplementation increases total testosterone, free testosterone, DHT or causes hair loss/baldness".[64]
One well-documented effect of creatine supplementation is weight gain within the first week of the supplement schedule, likely attributable to greater water retention due to the increased muscle creatine concentrations by means of osmosis.[67]
A 2009 systematic review discredited concerns that creatine supplementation could affect hydration status and heat tolerance and lead to muscle cramping and diarrhea.[68][69]
Despite weight gain due to water retention and potential cramps being two seemingly "common" side effects, new research indicates that these side effects are likely not the result of creatine usage. In addition, the initial water retention is attributed to more short-term creatine use (the "loading" phase). Studies have shown that creatine usage does not necessarily affect total body water relative to muscle mass in the long-term.[70]
Long-term creatine supplementation has not been proven safe either in general or for people with kidney conditions.[71]
A 2019 systematic review published by the National Kidney Foundation investigated whether creatine supplementation had adverse effects on renal function.[72] They identified 15 studies from 1997 to 2013 that looked at standard creatine loading and maintenance protocols of 4–20 g/day of creatine versus placebo. They utilized serum creatinine, creatinine clearance, and serum urea levels as a measure of renal damage. While in general creatine supplementation resulted in slightly elevated creatinine levels that remained within normal limits, supplementation did not induce renal damage (P value< 0.001). Special populations included in the 2019 Systematic review included type 2 diabetic patients[73] and post-menopausal women,[74] bodybuilders,[75] athletes,[76] and resistance trained populations.[77][78][79] The study also discussed 3 case studies where there were reports that creatine affected renal function.[80][81][82]
In a joint statement between the American College of Sports Medicine, Academy of Nutrition and Dietetics, and Dietitians in Canada on performance enhancing nutrition strategies, creatine was included in their list of ergogenic aids and they do not list renal function as a concern for use.[83]
The most recent position stand on creatine from the Journal of International Society of Sports Nutrition states that creatine is safe to take in healthy populations from infants to the elderly to performance athletes. They also state that long term (5 years) use of creatine has been considered safe.[26]
It is important to mention that kidneys themselves, for normal physiological function, need phosphocreatine and creatine and indeed kidneys express significant amounts of creatine kinases (BB-CK and u-mtCK isoenzymes).[84] At the same time, the first of two steps for endogenous creatine synthesis takes place in the kidneys themselves. Patients with kidney disease and those undergoing dialysis treatment generally show significantly lower levels of creatine in their organs, since the pathological kidneys are both hampered in creatine synthesis capability and are in back-resorption of creatine from the urine in the distal tubules. In addition, dialysis patients lose creatine due to wash out by the dialysis treatment itself and thus become chronically creatine depleted. This situation is exacerbated by the fact that dialysis patients generally consume less meat and fish, the alimentary sources of creatine. Therefore, to alleviate chronic creatine depletion in these patients and allow organs to replenish their stores of creatine, it was proposed in a 2017 article in Medical Hypotheses to supplement dialysis patients with extra creatine, preferably by intra-dialytic administration. Such a supplementation with creatine in dialysis patients is expected to significantly improve the health and quality of the patients by improving muscle strength, coordination of movement, brain function and to alleviate depression and chronic fatigue that are common in these patients.[85][unreliable medical source?]
A 2011 survey of 33 supplements commercially available in Italy found that over 50% of them exceeded the European Food Safety Authority recommendations in at least one contaminant. The most prevalent of these contaminants was creatinine, a breakdown product of creatine also produced by the body.[86] Creatinine was present in higher concentrations than the European Food Safety Authority recommendations in 44% of the samples. About 15% of the samples had detectable levels of dihydro-1,3,5-triazine or a high dicyandiamide concentration. Heavy metals contamination was not found to be a concern, with only minor levels of mercury being detectable. Two studies reviewed in 2007 found no impurities.[87]
When creatine is mixed with protein and sugar at high temperatures (above 148 °C), the resulting reaction produces carcinogenic heterocyclic amines (HCAs).[88] Such a reaction happens when grilling or pan-frying meat.[89] Creatine content (as a percentage of crude protein) can be used as an indicator of meat quality.[90]
^Stout JR, Antonio J, Kalman E, eds. (2008). Essentials of Creatine in Sports and Health. Humana. ISBN978-1-59745-573-2.
^Barcelos RP, Stefanello ST, Mauriz JL, Gonzalez-Gallego J, Soares FA (2016). "Creatine and the Liver: Metabolism and Possible Interactions". Mini Reviews in Medicinal Chemistry. 16 (1): 12–8. doi:10.2174/1389557515666150722102613. PMID26202197. The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis.
^Volek JS, Ballard KD, Forsythe CE (2008). "Overview of Creatine Metabolism". In Stout JR, Antonio J, Kalman E (eds.). Essentials of Creatine in Sports and Health. Humana. pp. 1–23. ISBN978-1-59745-573-2.
^ abOchoa S (1989). Sherman EJ, National Academy of Sciences (eds.). David Nachmansohn. Biographical Memoirs. Vol. 58. National Academies Press. pp. 357–404. ISBN978-0-309-03938-3.
^Passwater RA (2005). Creatine. McGraw Hill Professional. p. 9. ISBN978-0-87983-868-3. Archived from the original on 19 June 2022. Retrieved 8 May 2018.
^ abGreen AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL (November 1996). "Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans". The American Journal of Physiology. 271 (5 Pt 1): E821-6. doi:10.1152/ajpendo.1996.271.5.E821. PMID8944667.
^ abCooper R, Naclerio F, Allgrove J, Jimenez A (July 2012). "Creatine supplementation with specific view to exercise/sports performance: an update". Journal of the International Society of Sports Nutrition. 9 (1): 33. doi:10.1186/1550-2783-9-33. PMC3407788. PMID22817979. Creatine is produced endogenously at an amount of about 1 g/d. Synthesis predominately occurs in the liver, kidneys, and to a lesser extent in the pancreas. The remainder of the creatine available to the body is obtained through the diet at about 1 g/d for an omnivorous diet. 95% of the bodies creatine stores are found in the skeletal muscle and the remaining 5% is distributed in the brain, liver, kidney, and testes [1].
^ abBrosnan ME, Brosnan JT (August 2016). "The role of dietary creatine". Amino Acids. 48 (8): 1785–91. doi:10.1007/s00726-016-2188-1. PMID26874700. S2CID3700484. The daily requirement of a 70-kg male for creatine is about 2 g; up to half of this may be obtained from a typical omnivorous diet, with the remainder being synthesized in the body ... More than 90% of the body's creatine and phosphocreatine is present in muscle (Brosnan and Brosnan 2007), with some of the remainder being found in the brain (Braissant et al. 2011). ... Creatine synthesized in liver must be secreted into the bloodstream by an unknown mechanism (Da Silva et al. 2014a)
^ abcdeHultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL (July 1996). "Muscle creatine loading in men". Journal of Applied Physiology. 81 (1): 232–7. doi:10.1152/jappl.1996.81.1.232. PMID8828669.
^ abHarris RC, Söderlund K, Hultman E (September 1992). "Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation". Clinical Science. 83 (3): 367–74. doi:10.1042/cs0830367. PMID1327657.
^Brosnan JT, da Silva RP, Brosnan ME (May 2011). "The metabolic burden of creatine synthesis". Amino Acids. 40 (5): 1325–31. doi:10.1007/s00726-011-0853-y. PMID21387089. S2CID8293857. Creatinine loss averages approximately 2 g (14.6 mmol) for 70 kg males in the 20- to 39-year age group. ... Table 1 Comparison of rates of creatine synthesis in young adults with dietary intakes of the three precursor amino acids and with the whole body transmethylation flux Creatine synthesis (mmol/day) 8.3
^T. Wallimann, M. Tokarska-Schlattner, D. Neumann u. a.: The Phosphocreatine Circuit: Molecular and Cellular Physiology of Creatine Kinases, Sensitivity to Free Radicals, and Enhancement by Creatine Supplementation. In: Molecular System Bioenergetics: Energy for Life. 22. November 2007. doi:10.1002/9783527621095.ch7C
^Hespel P, Eijnde BO, Derave W, Richter EA (2001). "Creatine supplementation: exploring the role of the creatine kinase/phosphocreatine system in human muscle". Canadian Journal of Applied Physiology. 26 Suppl: S79-102. doi:10.1139/h2001-045. PMID11897886.
^Persky AM, Brazeau GA (June 2001). "Clinical pharmacology of the dietary supplement creatine monohydrate". Pharmacological Reviews. 53 (2): 161–76. PMID11356982.
^Hanna-El-Daher L, Braissant O (August 2016). "Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models?". Amino Acids. 48 (8): 1877–95. doi:10.1007/s00726-016-2189-0. PMID26861125. S2CID3675631.
^Kreider RB (February 2003). "Effects of creatine supplementation on performance and training adaptations". Molecular and Cellular Biochemistry. 244 (1–2): 89–94. doi:10.1023/A:1022465203458. PMID12701815. S2CID35050122.
^Greenhaff PL, Casey A, Short AH, Harris R, Soderlund K, Hultman E (May 1993). "Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man". Clinical Science. 84 (5): 565–71. doi:10.1042/cs0840565. PMID8504634.
^Graham AS, Hatton RC (1999). "Creatine: a review of efficacy and safety". Journal of the American Pharmaceutical Association. 39 (6): 803–10, quiz 875–7. doi:10.1016/s1086-5802(15)30371-5. PMID10609446.
^Francaux M, Poortmans JR (December 2006). "Side effects of creatine supplementation in athletes". International Journal of Sports Physiology and Performance. 1 (4): 311–23. doi:10.1123/ijspp.1.4.311. PMID19124889. S2CID21330062.
^de Souza E, Silva A, Pertille A, Reis Barbosa CG, Aparecida de Oliveira Silva J, de Jesus DV, et al. (November 2019). "Effects of Creatine Supplementation on Renal Function: A Systematic Review and Meta-Analysis". Journal of Renal Nutrition. 29 (6): 480–489. doi:10.1053/j.jrn.2019.05.004. PMID31375416. S2CID199388424.
^Gualano B, de Salles Painelli V, Roschel H, Lugaresi R, Dorea E, Artioli GG, et al. (May 2011). "Creatine supplementation does not impair kidney function in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial". European Journal of Applied Physiology. 111 (5): 749–56. doi:10.1007/s00421-010-1676-3. PMID20976468. S2CID21335546.
^Neves M, Gualano B, Roschel H, Lima FR, Lúcia de Sá-Pinto A, Seguro AC, et al. (June 2011). "Effect of creatine supplementation on measured glomerular filtration rate in postmenopausal women". Applied Physiology, Nutrition, and Metabolism. 36 (3): 419–22. doi:10.1139/h11-014. PMID21574777.
^Kreider RB, Melton C, Rasmussen CJ, Greenwood M, Lancaster S, Cantler EC, et al. (February 2003). "Long-term creatine supplementation does not significantly affect clinical markers of health in athletes". Molecular and Cellular Biochemistry. 244 (1–2): 95–104. doi:10.1023/A:1022469320296. PMID12701816. S2CID25947100.
^Cancela P, Ohanian C, Cuitiño E, Hackney AC (September 2008). "Creatine supplementation does not affect clinical health markers in football players". British Journal of Sports Medicine. 42 (9): 731–5. doi:10.1136/bjsm.2007.030700. PMID18780799. S2CID20876433.
^Mayhew DL, Mayhew JL, Ware JS (December 2002). "Effects of long-term creatine supplementation on liver and kidney functions in American college football players". International Journal of Sport Nutrition and Exercise Metabolism. 12 (4): 453–60. doi:10.1123/ijsnem.12.4.453. PMID12500988.
^Thorsteinsdottir B, Grande JP, Garovic VD (October 2006). "Acute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrate". Journal of Renal Nutrition. 16 (4): 341–5. doi:10.1053/j.jrn.2006.04.025. PMID17046619.
^Barisic N, Bernert G, Ipsiroglu O, Stromberger C, Müller T, Gruber S, et al. (June 2002). "Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy". Neuropediatrics. 33 (3): 157–61. doi:10.1055/s-2002-33679. PMID12200746. S2CID9250579.
^ML.Guerrero, J.Beron, B.Spindler, P.Grosscurth, T.Wallimann and F.Verrey.Metabolic support of Na+ pump in apically permeabilized A6 kidney cell epithelia: role of creatine kinase.In: Am J Physiol. 1997 Feb;272(2 Pt 1):C697-706. doi:10.1152/ajpcell.1997.272.2.C697, PMID9124314
^T. Wallimann, U. Riek, M. M. Möddel: Intradialytic creatine supplementation: A scientific rationale for improving the health and quality of life of dialysis patients.In: Medical Hypotheses 2017 Febr;99, S. 1-14. doi:10.1016/j.mehy.2016.12.002, PMID28110688.
^Moreta S, Prevarin A, Tubaro F (June 2011). "Levels of creatine, organic contaminants and heavy metals in creatine dietary supplements". Food Chemistry. 126 (3): 1232–1238. doi:10.1016/j.foodchem.2010.12.028.
^Dahl O (1 July 1963). "Meat Quality Measurement, Creatine Content as an Index of Quality of Meat Products". Journal of Agricultural and Food Chemistry. 11 (4): 350–355. doi:10.1021/jf60128a026.