Differential dynamic programming (DDP) is an optimal control algorithm of the trajectory optimization class. The algorithm was introduced in 1966 by Mayne[1] and subsequently analysed in Jacobson and Mayne's eponymous book.[2] The algorithm uses locally-quadratic models of the dynamics and cost functions, and displays quadratic convergence. It is closely related to Pantoja's step-wise Newton's method.[3][4]
describe the evolution of the state given the control from time to time . The total cost is the sum of running costs and final cost , incurred when starting from state and applying the control sequence until the horizon is reached:
where , and the for are given by Eq. 1. The solution of the optimal control problem is the minimizing control sequence
Trajectory optimization means finding for a particular , rather than for all possible initial states.
Let be the partial control sequence and define the cost-to-go as the partial sum of costs from to :
The optimal cost-to-go or value function at time is the cost-to-go given the minimizing control sequence:
Setting , the dynamic programming principle reduces the minimization over an entire sequence of controls to a sequence of minimizations over a single control, proceeding backwards in time:
DDP proceeds by iteratively performing a backward pass on the nominal trajectory to generate a new control sequence, and then a forward-pass to compute and evaluate a new nominal trajectory. We begin with the backward pass. If
is the argument of the operator in Eq. 2, let be the variation of this quantity around the -th pair:
and expand to second order
(3)
The notation used here is a variant of the notation of Morimoto where subscripts denote differentiation in denominator layout.[5]
Dropping the index for readability, primes denoting the next time-step , the expansion coefficients are
The last terms in the last three equations denote contraction of a vector with a tensor. Minimizing the quadratic approximation (3) with respect to we have
(4)
giving an open-loop term and a feedback gain term . Plugging the result back into (3), we now have a quadratic model of the value at time :
Recursively computing the local quadratic models of and the control modifications , from down to , constitutes the backward pass. As above, the Value is initialized with . Once the backward pass is completed, a forward pass computes a new trajectory:
The backward passes and forward passes are iterated until convergence.
Differential dynamic programming is a second-order algorithm like Newton's method. It therefore takes large steps toward the minimum and often requires regularization and/or line-search to achieve convergence.[6][7] Regularization in the DDP context means ensuring that the matrix in Eq. 4 is positive definite. Line-search in DDP amounts to scaling the open-loop control modification by some .
Sampled differential dynamic programming (SaDDP) is a Monte Carlo variant of differential dynamic programming.[8][9][10] It is based on treating the quadratic cost of differential dynamic programming as the energy of a Boltzmann distribution. This way the quantities of DDP can be matched to the statistics of a multidimensional normal distribution. The statistics can be recomputed from sampled trajectories without differentiation.
Sampled differential dynamic programming has been extended to Path Integral Policy Improvement with Differential Dynamic Programming.[11] This creates a link between differential dynamic programming and path integral control,[12] which is a framework of stochastic optimal control.
Interior Point Differential dynamic programming (IPDDP) is an interior-point method generalization of DDP that can address the optimal control problem with nonlinear state and input constraints.[13]
^de O. Pantoja, J. F. A. (1988). "Differential dynamic programming and Newton's method". International Journal of Control. 47 (5): 1539–1553. doi:10.1080/00207178808906114. ISSN0020-7179.
^Morimoto, J.; G. Zeglin; C.G. Atkeson (2003). "Minimax differential dynamic programming: Application to a biped walking robot". Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on. Vol. 2. pp. 1927–1932.
^
Liao, L. Z; C. A Shoemaker (1991). "Convergence in unconstrained discrete-time differential dynamic programming". IEEE Transactions on Automatic Control. 36 (6): 692. doi:10.1109/9.86943.
^"Sampled differential dynamic programming". 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/IROS.2016.7759229. S2CID1338737.