Weil introduced abstract rather than projective varieties partly so that he could construct the Jacobian of a curve. (It was not known at the time that Jacobians are always projective varieties.) It was some time before anyone found any examples of complete abstract varieties that are not projective.
In the 1950s Weil's work was one of several competing attempts to provide satisfactory foundations for algebraic geometry, all of which were superseded by Grothendieck's development of schemes.