Peltier was the author of numerous papers in different departments of physics. His name is specially associated with the thermal effects at junctions in a voltaic circuit,[3] the Peltier effect. Peltier introduced the concept of electrostatic induction (1840), based on the modification of the distribution of electric charge in a material under the influence of a second object closest to it and its own electrical charge.
Peltier's numerous papers are devoted in great part to atmospheric electricity, waterspouts, cyanometry and polarization of sky-light, the temperature of water in the spheroidal state, and the boiling-point at high elevations. There are also a few devoted to curious points of natural history. His name will always be associated with the thermal effects at junctions in a voltaic circuit,[4] a discovery of importance comparable with those of Seebeck and Cumming.[5]
Peltier discovered the calorific effect of electric current passing through the junction of two different metals. This is now called the Peltier effect[6] (or Peltier–Seebeck effect). By switching the direction of current, either heating or cooling may be achieved. Junctions always come in pairs, as the two different metals are joined at two points. Thus heat will be moved from one junction to the other.
The Peltier effect is the presence of heating or cooling at an electrified junction of two different conductors (1834).[7] His great experimental discovery was the heating or cooling of the junctions in a heterogeneous circuit of metals according to the direction in which an electric current is made to pass round the circuit. This reversible effect is proportional directly to the strength of the current, not to its square, as is the irreversible generation of heat due to resistance in all parts of the circuit. It is found that, if a current pass from an external source through a circuit of two metals, it cools one junction and heats the other. It cools the junction if it be in the same direction as the thermoelectric current which would be caused by directly heating that junction.[4] In other words, the passage of a current from an external source produces in the junctions of the circuit a distribution of temperature which leads to the weakening of the current by the superposition of a thermo-electric current running in the opposite direction.[5]
When electromotive current is made to flow through an electronic junction between two conductors (A and B), heat is removed[8] at the junction. To make a typical pump, multiple junctions are created between two plates. One side heats and the other side cools. A dissipation device is attached to the hot side to maintain cooling effect on the cold side.[9] Typically, the use of the Peltier effect as a heat pump device involves multiple junctions in series, through which a current is driven. Some of the junctions lose heat due to the Peltier effect, while others gain heat. Thermoelectric pumps exploit this phenomenon, as do thermoelectric cooling Peltier modules found in refrigerators.[10]
The Peltier effect generated at the junction per unit time, , is equal to
Note: Total heat generated at the junction is not determined by the Peltier effect alone, being influenced by Joule heating and thermal gradient effects.
The Peltier coefficients[11][12] represent how much heat is carried per unit charge. With charge current continuous across a junction, the associated heat flow will develop a discontinuity if and are different.
The Peltier effect can be considered as the back-action counterpart to the Seebeck effect (analogous to the back-emf in magnetic induction[13]): if a simple thermoelectric circuit is closed then the Seebeck effect will drive a current, which in turn (via the Peltier effect) will always transfer heat from the hot to the cold junction.
The true importance of this "Peltier effect" in the explanation of thermoelectric currents was first clearly pointed out by James Prescott Joule; and Sir William Thomson[14] further extended the subject by showing, both theoretically and experimentally, that there is something closely analogous to the Peltier effect when the heterogeneity is due, not to difference of quality of matter, but to difference of temperature in contiguous portions of the same material. Shortly after Peltier's discovery was published, Lenz used the effect to freeze small quantities of water by the cold developed in a bismuth-antimony junction when a voltaic current was passed through the metals in the order named.[5]
Mémoire sur la formation des tables des rapports qu'il y a entre la force d'un courant électrique et la déviation des aiguilles des multiplicateurs: suivi de recherches sur les causes de perturbation des couples thermo-électriques et sur les moyens de s'en garantir dans leur emploi a la mesure des températures moyennes.[20] E.-J. Bailly, 1839.
Mémoire sur les diverses espèces de brouillards.[21] Hayez, 1841.
Observations faites dans les Alpes sur la température d'ébullition de l'eau.[25] Institut de France. Académie royale des sciences, 1844
Lettre sur la cause des différences existent entre les résultats des expériences de MM. Bravais et Peltier sur la température de l'ébullition de l'eau et les résultats d'expériences de cabinet.[26] Institute. April 22, 1844. (Reports, vol. 18, p. 768.)[27]
De la cyanométrie et de la polarimétrie atmosphérique: ou notice sur les additions et les changements fait au cyano-polariscope de M. Arago, pour le rendre cyano- polarimètre dans l'observation de tous les points du ciel.[29] 1845.
Notice sur les fluides, les forces, et la foudre.[31] rue de Bussy, 6, 1845
Notice sur la vie et les travaux scientifiques.[32] Bautruche, 1847.
Robert Hare (M.D., Professor of Chemistry in the University of Pennsylvania.), James Pollard Espy. Of the conclusion arrived at by a Committee of the Academy of Sciences of France, agreeably to which tornados are caused by heat; while agreeably to Peltier's report to the same body, certain insurers had been obliged to pay for a tornado as an electrical storm; also abstracts from Peltier's report; moreover, quotations shewing the ignorance which existed in the Academy respecting [...] the meteor in question [...] with objections to the opinions of Peltier and Espy. Second edition, revised. 1852.
^A Handy Book of Reference on All Subjects and for All Readers, Volume 6. Edited by Ainsworth Rand Spofford, Charles Annandale. Gebbie publishing Company, limited, 1900. p341 ed., also Gebbie, 1902 version, p341
^ abcThe New Werner Twentieth Century Edition of the Encyclopædia Britannica: A Standard Work of Reference in Art, Literature, Science, History, Geography, Commerce, Biography, Discovery and Invention, Volume 18. Werner Company, 1907. p491
^The Peltier effect, where current is forced through a junction of two different metals, also forms the basis of the small 12/24 volt vehicular HVAC systems. It forms the basis of the relatively costly, but stable, junction heated soldering irons. It is used for spot cooling of certain integrated circuits.
^ abYu. A. Skripnik, A. I. Khimicheva. Methods and devices for measuring the Peltier coefficient of an inhomogeneous electric circuit. Measurement Techniques July 1997, Volume 40, Issue 7, pp 673-677
^The magnetic fieldB is sometimes called magnetic induction.
^Mathematical and physical papers, by Sir William Thomson. Collected from different scientific periodicals from May, 1841, to the present time. Kelvin, William Thomson, Baron, 1824-1907., Larmor, Joseph, 1857-, Joule, James Prescott, 1818-1889. vol. viii. p. 90
^Tr. Memory training tables reports that between the strength of an electric current and the deflection of needles multipliciateurs: follow-up research on the causes of disruption of thermocouples and how to ensure in their job measuring average temperatures
^Tr. General considerations on the ether, followed by instructions on shooting stars
^Tr. Essay on the coordination of the above causes, produce and accompany electrical phenomena
^Tr. Observations in the Alps on the boiling temperature of water.
^Tr. Letter to the cause of differences between the results of the experiments of MM. Bravais and Peltier on the temperature of boiling water and the results of experiments cabinet.
^institut. 22 avril 1844. (Comptes-rendus, vol. 18, p. 768.)
^Tr. Research on the cause of variations in atmospheric pressure.