Kinetin

From Wikipedia - Reading time: 5 min

Kinetin
Names
IUPAC name
N6-furfuryladenine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.007.622 Edit this at Wikidata
EC Number
  • 208-382-2
KEGG
RTECS number
  • AU6270000
UNII
  • InChI=1S/C10H9N5O/c1-2-7(16-3-1)4-11-9-8-10(13-5-12-8)15-6-14-9/h1-3,5-6H,4H2,(H2,11,12,13,14,15) ☒N
    Key: QANMHLXAZMSUEX-UHFFFAOYSA-N ☒N
  • C(Nc1ncnc2nc[nH]c12)c1ccco1
Properties
C10H9N5O
Molar mass 215.216 g·mol−1
Appearance Off-white powder
Melting point 269–271 °C (516–520 °F; 542–544 K) (decomposes)
Structure
cubic
Related compounds
Related
cytokinin
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Kinetin (/'kaɪnɪtɪn/) is a cytokinin-like synthetic plant hormone that promotes cell division in plants.[1] Kinetin was originally isolated by Carlos O. Miller[2] and Skoog et al.[3] as a compound from autoclaved herring sperm DNA that had cell division-promoting activity. It was given the name kinetin because of its ability to induce cell division, provided that auxin was present in the medium. Kinetin is often used in plant tissue culture to induce callus formation (in conjunction with auxin) and regenerate shoot tissues from callus (with lower auxin concentration).

For a long time, it was believed that kinetin was an artifact produced from the deoxyadenosine residues in DNA, which degraded when standing for long periods or when heated during the isolation procedure. Therefore, it was thought that kinetin does not occur naturally, but since 1996, it has been shown by several researchers that kinetin exists naturally in the DNA of cells of almost all organisms tested so far, including humans and various plants. The mechanism of production of kinetin in DNA is thought to be via the production of furfural — an oxidative damage product of deoxyribose sugar in DNA — and its quenching by the adenine base's converting it into N6-furfuryladenine, kinetin.

Kinetin is also widely used in producing new plants from tissue cultures.

History

[edit]

In 1939, P. A. C. Nobécourt (Paris) began the first permanent callus culture from root explants of carrots (Daucus carota). Such a culture can be kept forever by successive transplantations onto fresh nutrient agar.[citation needed] The transplantations occur every three to eight weeks. Callus cultures are not cell cultures since whole tissue associations are cultivated. Though many cells keep their ability to divide, this is not true for all. One reason for this is the aneuploidy of the nuclei and the resultant unfavourable chromosome constellations.[citation needed]

In 1941, J. van Overbeek (Rijksuniversiteit Utrecht) introduced coconut milk as a new component of nutrient media for callus cultures.[4] Coconut milk is liquid endosperm. It stimulates the embryo to grow when it is supplied with food at the same time. Results yielded from callus cultures showed that its active components stimulate the growth of foreign cells, too.

In 1954 F. Skoog (University of Wisconsin, Madison) developed a technique for the generation and culture of wound tumor tissue from isolated shoot parts of tobacco (Nicotiana tabacum).[citation needed] The developing callus grows when supplied with yeast extract, coconut milk, or old DNA preparations.[citation needed] Freshly prepared DNA has no effect but becomes effective after autoclaving.[citation needed] This led to the conclusion that one of its breakdown products is required for cell growth and division. This characterized substance was named kinetin, and was classified as a phytohormone.

References

[edit]
  1. ^ "Kinetin - Plant Growth Regulators | CliniSciences". www.clinisciences.com. Retrieved 28 March 2023.
  2. ^ "Carlos Miller". Department of Biology, Indiana University. Retrieved 28 March 2023.
  3. ^ Amasino, R. (2005). "1955: Kinetin Arrives. The 50th Anniversary of a New Plant Hormone". Plant Physiology. 138 (3): 1177–1184. doi:10.1104/pp.104.900160. PMC 1176392. PMID 16009993.
  4. ^ Van Overbeek, J.; Conklin, M. E.; Blakeslee, A. F. (1941). "Factors in Coconut Milk Essential for Growth and Development of Very Young Datura Embryos". Science. 94 (2441): 350–1. Bibcode:1941Sci....94..350V. doi:10.1126/science.94.2441.350. PMID 17729950.
  • Mok, David W.S.; Mok, Machteld C., eds. (1994). Cytokinins: chemistry, activity and function. Boca Raton, Florida: CRC Press. ISBN 978-0-8493-6252-1.
  • Barciszewski, J.; Siboska, G. E.; Pedersen, B. O.; Clark, B. F.; Rattan, S. I. (1996). "Evidence for the presence of kinetin in DNA and cell extracts". FEBS Letters. 393 (2–3): 197–200. doi:10.1016/0014-5793(96)00884-8. PMID 8814289. S2CID 21238076.
  • Barciszewski, J.; Rattan, S. I. S.; Siboska, G.; Clark, B. F. C. (1999). "Kinetin — 45 years on". Plant Science. 148: 37–45. doi:10.1016/S0168-9452(99)00116-8.


Licensed under CC BY-SA 3.0 | Source: https://en.wikipedia.org/wiki/Kinetin
18 views | Status: cached on November 22 2024 18:59:24
Download as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF