The largest prehistoric animals include both vertebrate and invertebrate species. Many of them are described below, along with their typical range of size (for the general dates of extinction, see the link to each). Many species mentioned might not actually be the largest representative of their clade due to the incompleteness of the fossil record and many of the sizes given are merely estimates since no complete specimen have been found. Their body mass, especially, is largely conjecture because soft tissue was rarely fossilized. Generally the size of extinct species was subject to energetic[1] and biomechanical constraints.[2]
The herbivorous Alierasaurus was the largest caseid and the largest amniote to have lived at the time, with an estimated length around 6–7 m (20–23 ft).[3]Cotylorhynchus hancocki is also large, with an estimated length and weight of at least 6 m (20 ft)[4] and more than 500 kg (1,100 lb).[5]
The biggest carnivorous synapsid of Early Permian was Dimetrodon, which could reach 4.6 m (15 ft) and 250 kg (550 lb).[8] The largest members of the genus Dimetrodon were also the world's first fully terrestrial apex predators.[9]
The plant-eating dicynodontLisowicia bojani is the largest-known of all non-mammalian synapsids, at about 4.5 m (15 ft) long, 2.6 m (8 ft 6 in) tall, and 9,000 kg (20,000 lb) in body mass.[11][12][13] However, in 2019 its weight was later more reliably estimated by modelling its mass from the estimated total volume of its body. These estimates varied depending on the girth of its rib cage and the amount of soft tissue modelled around the skeleton, with an overall average weight of 5.9 metric tons (6.5 short tons), and a lowermost estimate with minimal body fat and other tissues at 4.9 metric tons (5.4 short tons) and a maximum of 7 metric tons (7.7 short tons) at its bulkiest.[14]
The largest carnivorous non-mammalian synapsids was the dinocephalianAnteosaurus, which was 5–6 m (16–20 ft) long, and weighed 500–600 kg (1,100–1,300 lb).[16][17] Fully grown Titanophoneus from the same family Anteosauridae likely had a skull of 1 m (3.3 ft) long.[17]
Inostrancevia latifrons is the largest known gorgonopsian, with a skull length of more than 60 cm (24 in), a total length approaching 3.5 m (11 ft) and a mass of 300 kg (660 lb).[18]Rubidgea atrox is the largest African gorgonopsian, with skull of nearly 45 cm (18 in) long.[19] Other large gorgonopsians include Dinogorgon with skull of ~40 cm (16 in) long,[20]Leontosaurus with skull of almost 40 cm (16 in) long,[19] and Sycosaurus with skull of ~38 cm (15 in) long.[19]
The largest known non-mammalian cynodont is Scalenodontoides, a traversodontid, which had a maximum skull length of approximately 61.7 centimetres (24.3 in) based on a fragmentary specimen.[24]
Paceyodon davidi was the largest of morganucodontans, cynodonts close to mammals. It is known by a right lower molariform 3.3 mm (0.13 in) in length, which is bigger than molariforms of all other morganucodontans.[25]
The largest gobiconodont and the largest well-known Mesozoic mammal was Repenomamus.[27][28][29][30][31][32] The known adult of Repenomamus giganticus reached a total length of around 1 m (3 ft 3 in) and an estimated mass of 12–14 kg (26–31 lb).[29] With such parameters it surpassed in size several small theropod dinosaurs of the Early Cretaceous.[33]Gobiconodon was also a large mammal,[31][32] it weighed 5.4 kilograms (12 lb),[29] had a skull of 10 cm (3.9 in) in length, and had 35 cm (14 in) in presacral body length.[34]
The largest known monotreme (egg-laying mammal) ever was the extinct long-beaked echidna species known as Murrayglossus hacketti, known from a couple of bones found in Western Australia. It was the size of a sheep, weighing probably up to 30 kg (66 lb).[37]
Stagodontid mammal Didelphodon was one of the largest Mesozoic metatherians and all Cretaceous mammals.[45] Its skull could reach over 10 centimetres (3.9 in) in length[46] and a weight of complete animal was 5.2 kilograms (11 lb).[47]
The largest known marsupial, and the largest metatherian, is the extinct Diprotodon, about 3 m (9.8 ft) long, standing 2 m (6 ft 7 in) tall and weighing up to 2,786 kg (6,142 lb).[48] Fellow vombatiformPalorchestes azael was similar in length being around 2.5 m (8.2 ft), with body mass estimates indicating it could exceed 1,000 kg (2,200 lb).[49]
The largest known carnivorous marsupial was Thylacoleo carnifex. Measurements taken from a number of specimens show they averaged 101 to 164 kg (223 to 362 lb) in weight.[50][51]
The largest known kangaroo was an as yet unnamed species of Macropus, estimated to weigh 274 kg (604 lb),[52] larger than the largest known specimen of Procoptodon, which could grow up to 2 m (6 ft 7 in) and weigh 230 kg (510 lb).[53] Some species from the genus Sthenurus were similar in size or a bit larger than the extant grey kangaroo (Macropus giganteus).[54]
The largest potoroid ever recorded was Borungaboodie, which was nearly 30% bigger than the largest living species and weighted up to 10 kg (22 lb).[55]
The largest known cimolestan is Coryphodon, 1 m (3 ft 3 in) high at the shoulder, 2.5 m (8 ft 2 in) long[56][57] and up to 700 kg (1,500 lb) of mass.[58]Barylambda was also a huge mammal, at 650 kg (1,430 lb).[59]Wortmania and Psittacotherium from the group Taeniodonta were among the largest mammals of the Early Paleocene.[60] Lived as soon as half a million years after K–Pg boundary, Wortmania reached 20 kg (44 lb) in body mass. Psittacotherium, which appeared two million years later, reached 50 kg (110 lb).[60]
The largest leptictid ever discovered is Leptictidium tobieni from the Middle Eocene of Germany. It had a skull 101 mm (4.0 in) long, head with trunk 375 mm (14.8 in) long, and tail 500 mm (20 in) long.[61] Close European relatives from the same family Pseudorhyncocyonidae had skulls of 67–101 mm (2.6–4.0 in) in length.[61]
The larger of the two species of bibymalagasy (Plesiorycteropus madagascariensis), extinct tenrec relatives from Madagascar, is estimated to have weighed from 10 to 18 kilograms (21 to 40 lb).[62]
The largest known land-dwelling artiodactyl was Hippopotamus gorgops with a length of 4.3 m (14 ft), a height of 2.1 m (6 ft 11 in), and a weight of 5 t (11,000 lb).[63]
The largest of Bovinae as well as the largest bovid was Bison latifrons. It reached a weight from 1,250 kg (2,760 lb)[69][70] to 2,000 kg (4,400 lb),[71] 4.75 m (15.6 ft) in length, shoulder height of 2.31 m (7.6 ft),[72] and had horns that spanned 2.13 m (7 ft 0 in).[73] The North American Bison antiquus reached up to 4.6 m (15 ft) long, 2.27 m (7.4 ft) tall, weight of 1,588 kg (3,501 lb),[74] and horn span of 1 m (3.3 ft).[72] The African Pelorovis reached 2 t (2.2 short tons) in weight and had bony cores of the horns about 1 m (3 ft 3 in) long.[75] Another enormous bovid, the african giant buffalo (Syncerus antiquus) reached 3 m (9.8 ft) in length from muzzle to the end of the tail, 1.85 m (6.1 ft) in height at the withers, 1.7 m (5.6 ft) in height at the hindquarters,[76][77] and the distance between the tips of its horns was as large as 2.4 m (7 ft 10 in).[76] Aside from local populations and subspecies of extant species, such as the gaur population in Sri Lanka, European bison in British Isles, Caucasian wisent and Carpathian wisent, the largest modern extinct bovid is aurochs (Bos primigenius) with an average height at the shoulders of 155–180 cm (61–71 in) in bulls and 135–155 cm (53–61 in) in cows, while aurochs populations in Hungary had bulls reaching 155–160 cm (61–63 in).[78] The kouprey (Bos sauveli), reaching 1.7–1.9 m (5 ft 7 in – 6 ft 3 in) in shoulder height,[79][80] has existed since the Middle Pleistocene[81] and is also considered to be possibly extinct.[82][83]
The long-legged Megalotragus is possibly the largest known alcelaphine bovid,[84] bigger than the extant wildebeest.[85] The tips of horns of M. priscus were located at a distance of about 1.2 m (3 ft 11 in) from each other.[86]
The extinct cervidIrish elk (Megaloceros giganteus) reached over 2.1 m (7 ft) in height, 680 kg (1,500 lb) in mass and could have antlers spanning up to 4.3 m (14 ft) across, about twice the maximum span for a moose's antlers.[87][88] The giant moose (Cervalces latifrons) reached 2.1 to 2.4 m (6.9 to 7.9 ft) high[89] and was twice as heavy as the Irish elk but its antler span at 2.5 m (8.2 ft) was smaller than that of Megaloceros.[90][91] North American stag-moose (Cervalces scotti) reached 2.5 metres (8.2 ft) in length and a weight of 708.5 kilograms (1,562 lb).[92][93]
The largest known giraffid, aside from the extant giraffe, is Sivatherium, with a body weight of 1,250 kg (2,760 lb).[94]
The largest known wild suid to ever exist was Kubanochoerus gigas, having measured up to 500 kg (1,100 lb) and stood around 1 m (3 ft 3 in) tall at the shoulder.[97]Megalochoerus could be similar in size, possibly weighing 303 kg (668 lb) or 526 kg (1,160 lb).[98]
The largest tayassuid extinct Platygonus species were similar in size to modern peccaries especially giant peccary, at around 1 m (3.3 ft) in body length, and had long legs, allowing them to run well. They also had a pig-like snout and long tusks which were probably used to fend off predators.[99]
The largest camelid was Titanotylopus from the Miocene of North America. It possibly reached 2,485.6 kg (5,480 lb) and a shoulder height of over 3.4 m (11 ft).[100][101] The Syrian camel (Camelus moreli) was twice as big as the modern camels.[102] It was 3 m (9.8 ft) at the shoulder[103] and 4 m (13 ft) tall.[102]Camelops had legs to be 20% longer than that of Dromedary, and was about 2.3 m (7 ft 7 in) tall at the shoulder and weighed about 1,000 kg (2,200 lb).[104]
The anoplotheriidAnoplotherium is thought to have been capable of reaching up to 271 kg (597 lb) in the case of A. commune and 229 kg (505 lb) in the case of A. latipes.[105]A. latipes in particular could have measured more than 2.5 m (8 ft 2 in) in length and 1.25 m (4 ft 1 in) in shoulder height. Because it was probably capable of facultative bipedalism, it could have been capable of standing over 3 m (9.8 ft) tall.[106]
The heaviest archeocete, and possibly the heaviest known mammal was Perucetus, with weight estimated at 85–340 t (84–335 long tons; 94–375 short tons), while length is estimated at 17.0–20.1 meters (55.8–65.9 ft),[107] possibly rivalling the Blue Whale in mass. However, Motani and Pyenson in 2024 argued that it is extremely difficult for Perucetus to rival or exceed the blue whale in weight. They discussed that since Perucetus is much shorter than the blue whale in length, it should be at least 3.375 times denser or 1.83 times fatter to weigh heavier, which is impossible for vertebrates whose whole-body density range from 0.75 to 1.2. Motani and Pyenson tested the hypotheses of Bianucci and colleagues by performing various body mass estimation methods: the regression-based and volumetric mass estimation resulted in 60–114 t (59–112 long tons; 66–126 short tons) for a length range of 17–20 m (56–66 ft), though the likely body mass range would fall within 60–70 t (59–69 long tons; 66–77 short tons) . They also claimed that the previous estimation is inflated by assumed isometry, and that the effect from pachyostosis on the estimation of body mass is not negligible as it resulted in underestimation.[108] The longest of known Eocene archeocete whales was Basilosaurus at 17–20 m (56–66 ft) in length.[109][110][111]
Some Neogenerorquals were comparable in size to modern huge relatives. Parabalaenoptera was estimated to be about the size of the modern gray whale,[113] about 16 m (52 ft) long. Some balaenopterids perhaps rivaled the blue whale in terms of size,[113] though other studies disagree that any baleen whale grew that large in the Miocene.[114]
One of the largest known perissodactyls, and the second largest land mammal (see Palaeoloxodon namadicus) of all time was the hornless rhino Paraceratherium. The largest individual known was estimated at 4.8 m (15.7 ft) tall at the shoulders, 7.4 m (24.3 ft) in length from nose to rump, and 17 t (18.7 short tons) in weight.[115][116]
A large specimen of an unnamed species of the related Dzungariotherium has been estimated to be around 20.6 metric tonnes.[117]
Some prehistoric horned rhinos also grew to large sizes. The biggest Elasmotherium reached up to 5–5.2 m (16–17 ft) long,[118] 2.5 m (8 ft 2 in) high[119] and weighed 3.5–5 t (3.9–5.5 short tons).[120][118][119] Such parameters make it the largest rhino of the Quaternary.[120]Woolly rhinoceros (Coelodonta antiquitatis) of the same time reached 1,100–1,500 kg (2,400–3,300 lb)[121] or 2,000 kg (4,400 lb),[122][123] 1.93 m (6 ft 4 in) at the shoulder height and 4.6 m (15 ft) in length.[124]
Metamynodon, an amynodontid, reached 4 m (13 ft) in length, comparable to Hippopotamus in measurement and shape.[125]
The giant tapir (Tapirus augustus) was the largest tapir ever, at about 623 kg (1,373 lb)[126] and 1 m (3.3 ft) tall at the shoulders.[127] Earlier, this mammal was estimated even bigger, at 1.5 m (4.9 ft) tall, and assigned to the separate genus Megatapirus.[127]
The largest known lophiodont is Lophiodon, with L. lautricense being estimated to reach more than 2,000 kg (4,400 lb) in weight.[128]
Late Eocene perissodactyls from the family Brontotheriidae attained huge sizes. The North American Megacerops (also known as Brontotherium[131]) reached 2.5 m (8 ft 2 in) tall at the shoulders,[132] 5 m (16 ft) in length,[131] and 3 t (6,600 lb) in weight.[133]Embolotherium from Asia was equal in size.[134]
The largest prehistoric horse was Equus giganteus of North America. It was estimated to grow to more than 1,250 kg (1.38 short tons) and 2 m (6 ft 7 in) at the shoulders.[135] The largest anchitherine equid was Hypohippus at 403 to 600 kg (888 to 1,323 lb), comparable to large modern domestic horses.[136][137]Megahippus is another large anchitheriine. With the body mass of 266.2 kg (587 lb) it was much heavier than most of its close relatives.[136]
Among the largest-sized genera of palaeotheres, close relatives of horses, is Palaeotherium, with P. giganteum being estimated to reach weights of more than 700 kg (1,500 lb).[138] Previously until the naming of P. giganteum in 1994, P. magnum was considered the largest species of Palaeotherium,[139] potentially reaching 1.3 m (4 ft 3 in) in shoulder height and 2.52 m (8 ft 3 in) in length.[140] Another palaeothere Cantabrotherium is estimated to have weighed about 600 kg (1,300 lb).[138]
The largest known dinoceratan was Eobasileus with skull length of 102 cm (40 in), 2.1 m (6 ft 11 in) tall at the back and 1.5 m (4 ft 11 in) tall at the shoulder.[143] Another huge animal of this group was Uintatherium, with skull length of 76 cm (30 in), 1.5 m (4 ft 11 in) tall at the shoulder,[143] 4 m (13 ft) in length and 2.25 t (2.48 short tons), the size of a rhinoceros.[144] Despite their large size, Eobasileus as well as Uintatherium had a very small brain.[143][144]
The largest terrestrial mammalian carnivore and the largest known bear, as well as the largest known mammalian land predator of all time, was Arctotherium angustidens, the South American short-faced bear. A humerus of A. angustidens from Buenos Aires indicates that the males of the species could have weighed 1,588–1,749 kg (3,501–3,856 lb) and stood at least 3.4 m (11 ft) tall on their hind-limbs.[145][146] Another huge bear was the giant short-faced bear (Arctodus simus), with the average weight of 625 kg (1,378 lb) and the maximum estimated at 957 kg (2,110 lb).[147] There is a guess that the largest individuals of this species could reached even larger mass, up to 1,200 kg (2,600 lb).[145] The extinct cave bear (Ursus spelaeus) was also heavier than many recent bears. Largest males weighed as much as 1,000 kg (2,200 lb).[148]Ailuropoda baconi from the Pleistocene was larger than the modern giant panda (Ailuropoda melanoleuca).[149]
The biggest odobenid and one of the biggest pinnipeds to have ever existed is Pontolis magnus, with a skull length of 60 cm (24 in) (twice as large as the skulls of modern male walruses)[150] and having a total body length of more than 4 m (13 ft).[151][152] Only the modern male elephant seals (Mirounga) reach similar sizes.[151] The second largest prehistoric pinniped is Gomphotaria pugnax with a skull length of nearly 47 cm (19 in).[150]
One of the largest of prehistoric otariids is Thalassoleon, comparable in size to the biggest extant fur seals. An estimated weight of T. mexicanus is no less than 295–318 kg (650–701 lb).[153]
The biggest known mustelid to ever exist was likely the giant otter, Enhydriodon. It exceeded 3 m (9.8 ft) in length, and would have weighed in at around 200 kg (440 lb), much larger than any other known mustelid, living or extinct.[154][155][156] There were other giant otters, like Siamogale, at around 50 kg (110 lb)[157] and Megalenhydris, which was larger than a modern-day giant river otter.[158]Megalictis was the largest purely terrestrial mustelid[159] (although Enhydriodon had recently been mentioned as the largest mustelid that also happens to be a terrestrial predator[154]). Similar in size to the jaguar, Megalictis ferox had even wider skull, almost as wide as of the black bear.[159]Megalictis had a powerful bite force, allowing it to eat large prey and crush bones, as modern hyenas and jaguars can.[159] Another large-bodied mustelid was the superficially cat-like Ekorus from the Miocene of Africa. At almost 44 kg (97 lb), the long-legged Ekorus was about the size of a wolf[160] and filling a similar to leopards ecological niche before big cats came to the continent.[161] Other huge mustelids include Perunium[162] and hypercarnivorousEomellivora, both from the Late Miocene.[163]
The heaviest procyonid was possibly South American Chapalmalania. It reached 1.5 metres (4.9 ft) in body length with a short tail and 150 kilograms (330 lb), comparable in size to an American black bear (Ursus americanus).[164] Another huge procyonid was Cyonasua, which weighted about 15–25 kg (33–55 lb), about the same size as a medium-sized dog.[165]
The largest canid of all time was Epicyon haydeni, which stood 90 cm (35 in) tall at the shoulder, had a body length of 2.4 m (7.9 ft) and weighed 100–125 kg (220–276 lb),[166][167][168] with the heaviest known specimen weighing up to 170 kg (370 lb).[42] The extinct dire wolf (Aenocyon dirus) reached 1.5 m (4.9 ft) in length and weighed between 50 and 110 kg (110 and 243 lb).[42][169] The largest wolf (Canis lupus) subspecies ever existed in Europe is the Canis lupus maximus from the Late Pleistocene of France. Its long bones are 10% larger than those of extant European wolves and 20% longer than those of C. l. lunellensis.[170] The Late Pleistocene Italian wolf was morphometrically close to C. l. maximus.[171]
The largest bear-dog was a species of Pseudocyon weighing around 773 kg (1,704 lb), representing a very large individual.[172]
The largest nimravid was probably Quercylurus major as its fossils suggest it was similar in size to the modern-day brown bear and was scansorial.[173] In 2021, Eusmilus was declared as the largest of the holplophonine nimravids, reaching the weight of nearly 111 kg (245 lb), comparable to a small African lion.[174] However, the largest Hoplophoneus was estimated at 160 kg (350 lb).[42]
The biggest saber-toothed cats are Amphimachairodus kabir and Smilodon populator, with the males possibly reaching 350–490 kg (770–1,080 lb) and 220–450 kg (490–990 lb) respectively.[42][175][176] Another contender for the largest felid of all time is Machairodus. M. horribilis from China was estimated at 405 kg (893 lb)[177] while the North American M. lahayishupup weighed up to 410 kg (900 lb).[178][179][180]Xenosmilus was also a huge cat. It reached around 2 m (6.6 ft) long[181] and weighed around 300–350 kg (660–770 lb).[177]
The heaviest known pantherinefelids are the Ngangdong tiger (Panthera tigris soloensis), which are estimated to have weighed up to 486 kg (1,071 lb),[176] the extinction lion Panthera fossilis, which has been estimated to have maximum weight of 400–500 kg (880–1,100 lb),[182] the American lion (Panthera atrox), weighing up to 363 kg (800 lb),[183][184] and the Natodomeri lion of eastern Africa, which was comparable in size to large members of P. atrox.[185]
The largest known fossil hyena is Pachycrocuta, estimated at 90–100 cm (35–39 in) at the shoulder[190] and 190 kg (420 lb) weight.[42] Another huge hyena with mass over 100 kg (220 lb) is the cave hyena. It is actually a subspecies of the African spotted hyena, which is at 10% smaller than the extinct cave hyena.[191]
The percrocutid feliform, Dinocrocuta, was two or even three times as large as the extant spotted hyena, 160 or 240 kg (350 or 530 lb).[192]
The extinct giant fossa (Cryptoprocta spelea) had a body mass in range from 17 kg (37 lb)[193] to 20 kg (44 lb),[194] much larger than the modern fossa weighs (up to 8.6 kg (19 lb) for adult males[195]).
Found in Quaternary deposits of South and Central Americas, Desmodus draculae had a wingspan of 0.5 m (20 in) and a body mass of up to 60 g (2.1 oz). Such proportions make it the largest vampire bat that ever evolved.[201]
Hedgehogs, gymnures, shrews, and moles (Eulipotyphla)
The largest known animal of the group Eulipotyphla was Deinogalerix,[202] measuring up to 60 cm (24 in) in total length, with a skull up to 21 cm (8.3 in) long.[203]
Several of the extinct South American dinomyids were much bigger than the modern rodents. Josephoartigasia monesi was the largest-known rodent of all time, approximately weighing an estimated 480–500 kg (1,060–1,100 lb).[204]Phoberomys pattersoni weighed 125–150 kg (276–331 lb).[204] Both Josephoartigasia and Phoberomys reached about 1.5 m (4 ft 11 in) tall at the shoulder.[205] Another huge dinomyid, Telicomys gigantissimus had a minimal weight of 200 kg (440 lb).[205]
The largest beaver was the giant beaver (Castoroides) of North America. It grew over 2 m in length and weighed roughly 90 to 125 kg (198 to 276 lb), also making it one of the largest rodents to ever exist.[207]
The largest old world porcupine are the Hystrix refossa was larger than living porcupines. It was approximately 20% larger than its closest relative, the living Indian porcupine (H. indica), reaching lengths of over 115 cm (45 in).
The largest known primate as well as the largest hominid of all time was Gigantopithecus blackii, standing 3 m (9.8 ft) tall and weighing 540 kg (1,200 lb).[211][212] However In 2017, new studies suggested a body mass of 200–300 kg (440–660 lb) for this primate.[213] Another giant hominid was Meganthropus palaeojavanicus at 2.4 m (7 ft 10 in) in body height,[214] although it is known from very poor remains.[215]
During the Pleistocene, some archaic humans were close in sizes or even larger than early modern humans. Neanderthals (Homo neanderthalensis) reached 77.6 kg (171 lb) and 66.4 kg (146 lb) in average weight for males and females, respectively, larger than the parameters of modern humans (Homo sapiens) (68.5 kg (151 lb) and 59.2 kg (131 lb) for males and females, respectively).[216] A tibia from Kabwe (Zambia) indicates an indeterminate Homo individual of possibly 181.2 cm (71.3 in) in height. It was one of the tallest humans of the Middle Pleistocene and noticeably large even compared to recent humans.[217] The tallest Homo sapiens individuals from the Middle Pleistocene of Spain reached 194 cm (76 in) and 174 cm (69 in) for males and females, respectively.[217] Some Homo erectus could be as large as 185 cm (73 in) tall and 68 kg (150 lb) in weight.[218][219]
The largest known Old World monkey is the prehistoric baboon, with a male specimen of Dinopithecus projected to weigh an average of 46 kg (101 lb) and up to 57 kg (126 lb).[220] It exceeds the maximum weight record of the chacma baboon, the largest extant baboon. One source projects a specimen of Theropithecus oswaldi to have weighed 72 kg (159 lb).[221]
Some prehistoric lemuriform primates grew to huge sizes as well. Archaeoindris was a 1.5-metre-long (4.9 ft) sloth lemur that lived in Madagascar and weighed 150–187.8 kg (331–414 lb),[224] as large as an adult male gorilla.[225]Palaeopropithecus from the same family was also heavier than most modern lemurs, at 25.8–45.8 kg (57–101 lb).[226]Megaladapis is another large extinct lemur at 1.3 to 1.5 m (4 ft 3 in to 4 ft 11 in) in length[citation needed] and an average body mass of around 140 kg (310 lb).[227] Other estimates suggest 46.5–85.1 kg (103–188 lb) but its still much larger than any extant lemur.[226]
The elephant Palaeoloxodon namadicus has been suggested to have been the largest land mammal ever, based on a particularly large partial femur which was estimated to have belonged to an individual 22 t (24.3 short tons) in weight and about 5.2 m (17.1 ft) tall at the shoulder, though the author of the estimate said that this was speculative and should be treated with caution.[115] In 2023, a publication by Gregory S. Paul and Larramendi estimated that another specimen identified as cf. P. namadicus, also only known from a partial femur, would have weighed 18–19 tonnes (40,000–42,000 lb).Other authors have noted that weight estimates for proboscideans based on single bones can lead to estimates that are "highly improbable" compared to accurate estimates from complete skeletons.[228] In 2024, Biswas, Chang and Tsai estimated a maximum shoulder height of over 4.5 metres (15 ft) and suggested that the body mass for 5 measured specimens ranged from 13.2 to 18.5 tonnes (29,000 to 41,000 lb) from specimens from Taiwan.[229] The largest individual reported individual of the steppe mammoth of Eurasia (Mammuthus trogontherii) was estimated to reach 4.5 m (14.8 ft) at the shoulders and 14.3 t (15.8 short tons) in weight.[115][230]Stegodon zdanskyi, the biggest species of Stegodon, was 13 t (14.3 short tons) in body mass.[115] Another enormous proboscidean is Stegotetrabelodon syrticus, over 4 m (13 ft) in height and 11 to 12 t (12.1 to 13.2 short tons) in weight.[115] The Columbian mammoth (Mammuthus columbi) was about 4 m (13.1 ft) tall at the shoulder but didn't weigh as much as other huge mammoths. Its average mass was 9.5 t (10.5 short tons) with one unusually large specimen about 12.5 t (13.8 short tons).[115] Columbian mammoths had very long tusks. The largest known mammoth tusk, 4.9 m (16 ft) long, belonged to this species.[231]
The mammutid"Mammut" borsoni is one of the largest known proboscideans and land mammals. The average fully-grown male is estimated to have been 4.1 m (13 ft) tall and weighed about 16 t (17.6 short tons), with very large males possibly rivalling the estimated size of the largest Palaeoloxodon namadicus.[115] This species also had the longest tusks of any animals with the largest recorded specimen being 5.02 m (16.5 ft) long from basis to tip along the curve.[232]
Deinotherium was the largest proboscidean in Deinotheriidae family. Bones retrieved in Crete confirm the existence of specimen 4.1 m (13 ft) tall at the shoulders and more than 14 t (15.4 short tons) in weight.[115]
According to reports, Steller's sea cows have grown to 8 to 9 m (26 to 30 ft) long as adults, much larger than any extantsirenians.[233] The weight of Steller's sea cows is estimated to be 8–10 t (8.8–11.0 short tons).[234]
With its direct ancestor the Cuesta sea cow being around 9 m (30 ft) long and possibly 10 tonnes (11 short tonnes) in weight.[235]
The largest known arsinoitheriid was Arsinoitherium. A. zitteli would have been 1.75 m (5 ft 9 in) tall at the shoulders, and 3 m (9.8 ft) long.[236][237]A. giganteum reached even larger size than A. zitteli.[238]
Some of the prehistoric hyraxes were extremely large compared to modern small relatives. The largest hyracoid ever evolved is Titanohyrax ultimus.[239] With the mass estimation in rage of 600 kg (1,300 lb) to over 1,300 kg (2,900 lb) it was close in size to Sumatran rhinoceros.[240] Another enormous hyrax is Megalohyrax which had skull of 391 mm (15.4 in) in length[241] and reached the size of tapir.[239][242] More recent Gigantohyrax was three times as large as the extant relative Procavia capensis,[243] although it is noticeably smaller than earlier Megalohyrax and Titanohyrax.[244]
The largest cingulate known is Doedicurus, at 4 m (13 ft) long, 1.5 m (4 ft 11 in) high[144] and reaching a mass of approximately 1,910 to 2,370 kg (2.11 to 2.61 short tons).[citation needed] The largest species of Glyptodon, Glyptodon clavipes, reached 3–3.3 m (9.8–10.8 ft) in length[247][144] and 2 t (2.2 short tons) in weight.[citation needed]
The largest known pilosan is Eremotherium, a ground sloth with an estimated weight of up to 6.55 t (7.22 short tons) and a length of up to 6 m (20 ft),[248] which is as big as a bull African bush elephant. The closely related ground sloth Megatherium attained similarly large dimensions.[249]
The largest known litoptern was Macrauchenia, which had three hoofs per foot. It was a relatively large animal, with a body length of around 3 m (9.8 ft).[253]
The largest notoungulate known of complete remains is Toxodon. It was about 2.7 m (8 ft 10 in) in body length, and about 1.5 m (4 ft 11 in) high at the shoulder and resembled a heavy rhinoceros. Although incomplete, the preserved fossils suggests that Mixotoxodon were the most massive member of the group, with a weight about 3.8 t (4.2 short tons).[254]
The largest mammal of the South American order Pyrotheria was Pyrotherium at 2.9–3.6 m (9 ft 6 in – 11 ft 10 in) in length and 1.8–3.5 t (4,000–7,700 lb) in weight.[255]
Mosasaurs are the largest-known squamates. The largest-known mosasaur is likely Mosasaurus hoffmanni, estimated at more than 17 m (56 ft) in length,[256][257] however these estimations are based on heads and total body length ratio 1:10, which is unlikely for Mosasaurus, and probably that ratio is about 1:7.[258] Another giant mosasaur is Tylosaurus, estimated at 10–14 m (33–46 ft) in length.[259][260] Another mosasaur, Prognathodon reached similar sizes.
The largest known prehistoric snake is Titanoboa cerrejonensis, estimated at 12.8 m (42 ft) or even 14.3 m (47 ft)[261] in length and 1,135 kg (2,502 lb) in weight,[262] and madtsoiidVasuki indicus which is estimated to reach between 11–15 m (36–49 ft).[263] A close rival in size to those snakes is palaeophiid marine snake Palaeophis colossaeus, which may have been around 9 m (30 ft) in length[262][264][265] or even up to 12.3 m (40 ft).[266] Another known very large fossil snake is Gigantophis garstini, estimated at 9.3–10.7 m (31–35 ft) in length,[267][268] although later study shows smaller estimation about 6.6–7.2 m (22–24 ft).[269] The largest fossil python is Liasis dubudingala with length roughly 9 m (30 ft).[270] The largest viper as well as the largest venomous snake ever recorded is Laophis crotaloides from the Early Pliocene of Greece. This snake reached over 3 m (9.8 ft) in length and 26 kg (57 lb) in weight.[271][272] Another huge fossil viper is indeterminate species of Vipera. With a length of around 2 m (6 ft 7 in) it was one of the biggest predators of Mallorca during the Early Pliocene.[273] The largest known blind snake is Boipeba tayasuensis with estimated total length of 1.1 m (3 ft 7 in).[274]
The largest known land lizard is probably megalania (Varanus priscus) at 7 m (23 ft) in length.[275] As extant relatives, megalania could have been venomous and in that case this lizard was also the largest venomous vertebrate ever evolved.[276] However, maximum size of this animal is subject to debate.[277] Recent studies have estimated it at 5.5 m (18 ft) long.[278]
Turtles, tortoises and close relatives (Pantestudines)
The largest known turtle ever was Archelon ischyros at 5 m (16 ft) long and 2,200 kg (4,900 lb).[279] Possible second-largest sea turtle was Protostega at 3.9 m (13 ft) in total body length.[280][281] There is even a larger specimen of this genus from Texas estimated at 4.2 m (14 ft) in total length.[282][280] Partially known Cratochelone is estimated to reach 4 m (13 ft) in total length.[283] Another huge prehistoric sea turtle is the Late Cretaceous Gigantatypus, estimated at over 3.5 m (11 ft) in length.[284]Psephophorus terrypratchetti from the Eocene attained 2.3–2.5 m (7.5–8.2 ft) in body length.[285]
The largest tortoise was Megalochelys atlas at up to 2 m (6.6 ft) in shell length[286] and weighing 0.8–1.0 t (1,800–2,200 lb).[133]M. margae had carapace of 1.4–2 m (4.6–6.6 ft) long; an unnamed species from Java reached at least 1.75 m (5.7 ft) in carapace length.[287] The CenozoicTitanochelon were also larger than extant giant tortoises, with a shell length of up to 2 m (6 ft 7 in).[288][289] Other giant tortoises include Centrochelys marocana at 1.8–2 m (5.9–6.6 ft) in carapace length and Mesoamerican Hesperotestudo sp. at 1.5 m (4.9 ft) in carapace length.[287]
The largest trionychid ever recorded is indeterminate specimen GSP-UM 3019 from the Middle Eocene of Pakistan. Bony carapace of GSP-UM 3019 is 120 cm (3.9 ft) long and 110 cm (3.6 ft) wide indicates the total carapace diameter (with soft margin) about 2 m (6.6 ft).[290]Drazinderetes tethyensis from the same formation had a bony carapace 80 cm (2.6 ft) long and 70 cm (2.3 ft) wide.[290] Another huge trionychid is North American Axestemys byssinus at over 2 m (6.6 ft) in total length.[291]
The largest freshwater turtle of all time was the MiocenepodocnemidStupendemys, with an estimated parasagittal carapace length of 2.86 m (9 ft 5 in) and weight of up to 1,145 kg (2,524 lb).[292]Carbonemys cofrinii from the same family had a shell that measured about 1.72 m (5 ft 8 in),[293][294][295] complete shell was estimated at 1.8 m (5.9 ft).[296]
The largest meiolaniid was Meiolania. Meiolania platyceps had a carapace 100 cm (3.3 ft) long[287] and probably reached over 3 m (9.8 ft) in total body length.[298] An unnamed Late Pleistocene species from Queensland was even larger, up to 200 cm (6.6 ft) in carapace length.[287]Ninjemys oweni reached 100 cm (3.3 ft) in carapace length[287] and 200 kg (440 lb) in weight.[299]
The largest known plesiosauroid was an indeterminate specimen possibly belonging to Aristonectes (identified as cf. Aristonectes sp.), with a body length of 11–11.9 metres (36–39 ft) and body mass of 10.7–13.5 metric tons (11.8–14.9 short tons).[302] Another long plesiosauroid was Albertonectes at 11.2–11.6 metres (37–38 ft).[303]Thalassomedon rivaled it in size, with its length at 10.86–11.6 m (35.6–38.1 ft).[304] Other large plesiosauroids are Styxosaurus and Elasmosaurus. Both reached some more than 10 m (33 ft) in length.[305][306]Hydralmosaurus (previously synonymized with Elasmosaurus and Styxosaurus) reached 9.44 m (31.0 ft) in total body length.[306] In past, Mauisaurus was considered to be more than 8 m (26 ft) in length,[307][306] but later it was determined as nomen dubium.[308]
There is much controversy over the largest-known of the Pliosauroidea. Pliosaurus funkei (also known as "Predator X") is a species of large pliosaur, known from remains discovered in Norway in 2008. This pliosaur has been estimated at 10–13 m (33–43 ft) in length.[309] However, in 2002, a team of paleontologists in Mexico discovered the remains of a pliosaur nicknamed as "Monster of Aramberri", which is also estimated at 15 m (49 ft) in length,[310] with shorter estimation about 11.5 m (38 ft).[311] This species is, however, claimed to be a juvenile and has been attacked by a larger pliosaur.[312] Some media sources claimed that Monster of Aramberri was a Liopleurodon but its species is unconfirmed thus far.[310] Another very large pliosaur was Pliosaurus macromerus, known from a single 2.8-metre-long (9.2 ft) incomplete mandible.[313] The Early CretaceousKronosaurus queenslandicus is estimated at 9–10.9 m (30–36 ft) in length and 10.6–12.1 t (11.7–13.3 short tons) in weight.[314][311] The Late JurassicMegalneusaurus rex could reach lengths of 7.6–9.1 metres (25–30 ft).[315][316] Close contender in size was the Late CretaceousMegacephalosaurus eulerti with a length in range of 6–9 m (20–30 ft).[317]
The largest shuvosaurid and one of the largest pseudosuchian from the Triassic period was Sillosuchus. Biggest specimens could have reached 9–10 m (30–33 ft) in length.[322][323]
The largest known carnivorous pseudosuchian of the Triassic is loricatanFasolasuchus tenax, which measured an estimated of 8 to 10 m (26 to 33 ft).[322][323][324] It is both the largest "rauisuchian" known to science, and the largest non-dinosaurian terrestrial predator ever discovered.[citation needed] Biggest individuals of Postosuchus[325] and Saurosuchus[326] had a body length of around 7 m (23 ft). A specimen of Prestosuchus discovered in 2010 suggest that this animal also reached lengths of nearly 7 m (23 ft) making it one of the largest Triassic pseudosuchians.[327]
The Late CretaceousAegisuchus was originally estimated to reach 15 m (49 ft) in length by the lower estimate and as much as 22 m (72 ft) by the upper estimate although a length of over 15 m is likely a significant overestimate.[331] However, this estimation is likely to be a result of miscalculation, and its length would be only around 3.9 m (13 ft).[332]
The largest caiman and likely one of the largest crocodylians was Purussaurus brasiliensis estimated at 11–13 m (36–43 ft).[333] According to another information, maximum estimate measure 11.4 m (37 ft) and almost 7.8 t (8.6 short tons) in length and in weight respectively.[334] However, a 2022 study estimated a length of 7.6–9.2 metres (25–30 ft) and a mass of 2–6.2 metric tons (2.2–6.8 short tons) using a phylogenetic approach; and a length of 9.2–10 metres (30–33 ft) and mass of 3.9–4.9 metric tons (4.3–5.4 short tons) using a non-phylogenetic approach.[335]
Another giant caiman was Mourasuchus. Various estimates suggest the biggest specimens reached 9.47 m (31.1 ft) in length and 8.5 t (9.4 short tons) in weight.[336] but more recent estimates suggest 4.7–5.98 m (15.4–19.6 ft) in body length.[335]
Some extinct pholidosaurids reached giant sizes. In the past, Sarcosuchus imperator was believed to be the largest crocodylomorph, with initial estimates proposing a length of 12 m (39 ft) and a weight of 8 t (8.8 short tons).[354] However, recent estimates have now shrunk to a length of 9 to 9.5 m (29.5 to 31.2 ft) and a weight of 3.5 to 4.3 metric tons (3.9 to 4.7 short tons).[355] Related to Sarcosuchus, Chalawan thailandicus could have reached more than 10 m (33 ft) in length,[356] although other estimates suggest 7–8 m (23–26 ft).[341]
Some of largest terrestrial notosuchian crocodylomorphs were the MiocenesebecidBarinasuchus, with a skull of 95–110 cm (37–43 in) long, and Eocene sebecid Dentaneosuchus with estimated mandible length of 1 m (3.3 ft).[359][360] Various estimates suggest a possible length of these animals between 3–10 m (9.8–32.8 ft). Using proportion of Stratiotosuchus which is also large to have 47 cm (19 in) long skull,[361]Barinasuchus is estimated to have length at least 6.3 m (21 ft).[359][360]
Other huge notosuchian, although only known from fragmentary material, is an early member Razanandrongobe, which skull size may exceeded that of Barinasuchus and overall length may be around 7 m (23 ft).[362][363]
Redondavenator was the largest Triassic crocodylomorph ever recorded,[370] with a skull of at least 60 cm (2.0 ft) in length.[371][372] Another huge basal crocodylomorph was Carnufex[370] at 3 m (9.8 ft) long even through that is immature.[373]
The largest known pterosaur was Quetzalcoatlus northropi, at 127 kg (280 lb) and with a wingspan of 10–12 m (33–39 ft).[374] Another close contender is Hatzegopteryx, also with a wingspan of 12 m (39 ft) or more.[374] This estimate is based on a skull 3 m (9.8 ft) long.[375] Yet another possible contender for the title is Cryodrakon which had a 10-metre (33 ft) wingspan.[376] An unnamed pterodactyloid pterosaur from the Nemegt Formation could reach a wingspan of nearly 10 m (33 ft).[377][378] According to various assumptions, the wingspan of Arambourgiania philadelphiae reached from 8 m (26 ft) to more than 10 m (33 ft).[377][376] South American Tropeognathus reached the maximum wingspan of 8.7 m (29 ft).[379][380]
In April 2018, paleontologists announced the discovery of a previously unknown ichthyosaur that may have reached lengths of 26 m (85 ft) making it one of the largest animals known, rivaling some blue whales in size.[390][391] These remains were later named Ichthyotitan and it has been estimated to reach up to 25 m (82 ft), which makes it the largest ichthyosaur and the largest marine reptile ever.[392] Another large ichthyosaur was the Late TriassicShastasaurus sikanniensis at 21 m (69 ft) in length[393][394] and 81.5 t (180,000 lb) in weight.[395] Another, larger ichthyosaur was found in 1850 in Aust.[396] Its remains seemed to surpass the measurements of the other ichthyosaur, but the researchers commented that the remains were too fragmentary for a size estimate to be made.[396] Another huge ichthyosaur was Shonisaurus popularis at 15 m (49 ft) in length and 29.7 t (65,000 lb) in weight.[394] The largest Middle Triassic ichthyosaur as well as the largest animal of that time was Cymbospondylus youngorum at 17.65 m (57.9 ft) in length[395] and 44.7 t (99,000 lb) in weight.[395]
A mega-sauropod, Maraapunisaurus fragillimus (previously known as Amphicoelias fragillimus), is a contender for the largest-known dinosaur in history. It has been estimated at 58–60 m (190–197 ft) in maximum length and 122,400 kg (269,800 lb) in weight.[404] Unfortunately, the fossil remains of this dinosaur have been lost.[404] More recently, it was estimated at 35–40 m (115–131 ft) in length and 80–120 t (180,000–260,000 lb) in weight.[405]
Known from the incomplete and now disintegrated remains, the Late CretaceousBruhathkayosaurus matleyi was an anomalously large sauropod.[406] Informal estimations suggested as huge parameters as 45 m (148 ft) in length and 139–220 t (306,000–485,000 lb) in weight.[407] Some estimation however, suggests 37 m (121 ft) and 95 t (209,000 lb) but it still much heavier than most other sauropods.[407] More recent estimations by Gregory Paul in 2023 has placed its weight range around 110 t (240,000 lb) to a 170 t (370,000 lb). If true, it would make Bruhathkayosaurus the single largest terrestrial animal to have walked the earth and would have rivalled the largest blue whale recorded.[408]
BYU 9024, a massive cervical vertebra found in Utah,[409] may belong to a Barosaurus lentus[410][411] or Supersaurus vivianae[412] of a huge size, possibly 45–48 m (148–157 ft) in length and 60–66 t (132,000–146,000 lb) in body mass.[410][413]Supersaurus vivianae itself may have been the longest dinosaur yet discovered as a study of 3 specimens suggested length of 39 m (128 ft) or over 40 m (130 ft).[412]
Other huge sauropods include Argentinosaurus, Alamosaurus, and Puertasaurus with estimated lengths of 30–33 m (98–108 ft) and weights of 50–80 t (55–88 short tons).[422]Patagotitan was estimated at 37 m (121 ft) in length[423] and 57 t (63 short tons) in average weight,[424] and was similar in size to Argentinosaurus and Puertasaurus.[425] Giant sauropods like Supersaurus, Sauroposeidon, and Diplodocus probably rivaled them in length but not in weight.[404]Dreadnoughtus was estimated at 49 t (108,000 lb) in weight[424] and 26 m (85 ft) in length, but the most complete individual was immature when it died.[426]Turiasaurus is considered the largest dinosaur from Europe,[427][428] with an estimated length of 30 m (98 ft) and a weight of 50 t (55 short tons).[422][428] However, lower estimates at 21 m (69 ft) and 30 t (66,000 lb) would make it smaller than the Portuguese Lusotitan, which reached 24 m (79 ft) in length and 34 t (75,000 lb) in weight.[429]
Many large sauropods are still unnamed and may rival the current record holders:
The "Archbishop", a large brachiosaur that was discovered in 1930. As of October 2023[update], a scientific paper on the specimen is still in progress.[430]
Brachiosaurus nougaredi is yet another large brachiosaur from Early Cretaceous North Africa. The remains have been lost, but the sacrum drawing remains. It suggests a sacrum of almost 1.3 m (4.3 ft) long,[431] making it the largest dinosaur sacrum discovered so far, except those of Argentinosaurus and Apatosaurus.[432]
In 2010, the femur of a large sauropod was discovered in France. The femur suggests an animal that grew to immense sizes.[433]
The largest theropod as well as the largest terrestrial predator yet known is Tyrannosaurus rex, with the largest specimen known nicknamed Scotty (RSM P2523.8), located at the Royal Saskatchewan Museum, is reported to measure 13 m (43 ft) in length. Using a mass estimation technique that extrapolates from the circumference of the femur, Scotty was estimated as the largest known specimen at 8.87 metric tons (9.78 short tons) in body mass[434]
The largest pachycephalosaur was the eponymous Pachycephalosaurus. Previously claimed to be at 7 m (23 ft) in length,[428] it was later estimated about 4.5 metres (14.8 ft) long and a weight of about 450 kilograms (990 lb).[446]
The very largest known ornithopods, like Shantungosaurus were as heavy as medium-sized sauropods at up to 23 t (25 short tons),[449][450] and 16.6 m (54 ft) in length.[449]Magnapaulia reached 12.5 m (41 ft) in length,[451] or, according to original description, even 15 m (49 ft).[452][428] The MongolianSaurolophus, S. angustirostris, reached 13 m (43 ft) long and possibly more.[453] Such animal could weighed up to 11 t (12 short tons).[453] The largest Edmontosaurus reached 12 m (39 ft) in length and around 6 t (6.6 short tons) in body mass.[454] An estimated maximum length of Brachylophosaurus is 11 m (36 ft) resulting in weight of 7 t (7.7 short tons).[455] PASAC-1, informally named "Sabinosaurus", is the largest well-known North American saurolophine,[456] around 11 m (36 ft) long, that is about 20% larger than other known specimens.[457]Hypsibema missouriensis was up to 10.7 m (35 ft) long.[458][459] The Late CretaceousCharonosaurus was estimated around 10 m (33 ft) in length and 5 t (5.5 short tons) in weight.[428][460]
The largest ornithopod outside of Hadrosauroidea was likely the Iguanodon. Biggest specimens reached 11 m (36 ft) in length[461][462] and weighed around 4.5 t (5.0 short tons).[463] Another large ornithopod is Iguanacolossus, with 9 m (30 ft) in length and 5 t (5.5 short tons) in weight.[464][465]
The largest rhabdodontid was Matheronodon, estimated at 4.8 m (16 ft) in length.[466]Rhabdodon reached approximately 4 m (13 ft) and 250 kg (550 lb) according to 2016 estimates.[467]
The largest bird in the fossil record may be the extinct elephant bird species Aepyornis maximus of Madagascar, whose closest living relative is the kiwi. Giant elephant birds exceeded 2.3 metres (7.5 ft) in height, and average a mass of 850 kg (1,870 lb)[468]
Another contender is Brontornis burmeisteri, an extinct flightless bird from South America which reached a weight of 319 kg (703 lb) and a height of approximately 2.8 metres (9.2 ft).[470]
The tallest recorded bird was Pachystruthio dmanisensis, a relative of the ostrich. This particular species of bird stood at 3.5 metres (11.5 ft) tall and average a mass of 450 kg (990 lb)[471]
One of the largest enantiornitheans was Enantiornis,[493] with a length in life of around 78.5 cm (30.9 in), hip height of 34 cm (13 in), weight of 6.75 kg (14.9 lb),[494] and wingspan comparable to some of the modern gulls, around 1.2 m (3 ft 11 in).[493]Gurilynia was the largest Mesozoic bird from Mongolia, with a length of 53 cm (21 in), hip height of 23.2 cm (9.1 in), and weight of 2.1 kg (4.6 lb).[494]
The Late CretaceousAvisaurus was almost as large as Enantiornis. It had a wingspan around 1.2 m (3 ft 11 in),[493] a length of 72 cm (28 in), hip height of 31.5 cm (12.4 in), and weight of 5.1 kg (11 lb).[494] Even larger could be the Soroavisaurus. One tibiotarsus (PVL-4033) indicates an animal with a length of 80 cm (31 in), hip height of 35 cm (14 in), and weight of 7.25 kg (16.0 lb).[494] However, according to Walker and Dyke (2009) which considered PVL-4033 as Martinavis sp., its tibiotarsus length is 85.6 mm (3.37 in),[495] much shorter than that of Lectavis (156 mm (6.1 in) tibiotarsus)[496] which the same book estimated a length of 41 cm (16 in), hip height of 30 cm (12 in), and weight of 1.15 kg (2.5 lb).[494]Mirarce was comparable in size to a turkey, much larger than most of other enantiornitheans.[497]
Gargantuavis is the largest known bird of the Mesozoic, a size ranging between the cassowary and the ostrich, and a mass of 140 kg (310 lb) like modern ostriches.[499] In 2019 specimens MDE A-08 and IVPP-V12325 were measured at 1.8 m (5 ft 11 in) in length, 1.3 m (4 ft 3 in) in hip height, and 120 kg (260 lb) in weight.[479]
Large individuals of Gastornis reached up to 2 m (6 ft 7 in) in height.[502] Weight of Gastornis ranges from 100 kg (220 lb) to 156 kg (344 lb) and sometimes to 180 kg (400 lb) for European specimens and from 160 kg (350 lb) to 229 kg (505 lb) for North American.[503][477][504]
Possibly flightless, the MioceneGarganornis ballmanni was larger than any extant members of Anseriformes, with 15.3–22.3 kg (34–49 lb) in body mass.[505] Another huge anseriform was the flightless New Zealand goose (Cnemiornis). It reached 15–18 kg (33–40 lb), approaching in size to small species of moa.[506]
The largest heron was the Bennu heron (Ardea bennuides).[dubious – discuss] Based on remains discovered, it was approximately 2 m (6.6 ft) tall and had a wingspan up to 2.7 m (8.9 ft), thus surpassing the size of the largest living species in the heron family, the goliath heron.[514]
The Jamaican ibis (Xenicibis xympithecus) was a large ibis, weighing about 2 kg (70 oz).
The largest known of Ciconiiformes was Leptoptilos robustus, standing 1.8 m (5 ft 11 in) tall and weighing an estimated 16 kg (35 lb).[515][489]Ciconia maltha is a relatively large species of Ciconia, with a height of over 5 feet (1.5 meters) and a wingspan up to 10 feet (3.0 meters) across.[516]
One of the heaviest flying birds of all time was Argentavis, a Miocene teratornithid. The immense bird had a wingspan estimated up to 5.09–6.5 m (16.7–21.3 ft)[481][520] and a weight up to 70 to 72 kg (154 to 159 lb).[521][481]Argentavis'shumerus was only slightly shorter than an entire human arm.[522] Another huge teratorn was Aiolornis, with a wingspan of around 5 m (16 ft).[523] The PleistoceneTeratornis merriami reached 13.7 kg (30 lb) and 2.94–3.38 m (9.6–11.1 ft) in wingspan, with lower size estimates still exceeding the largest specimens of California condor (Gymnogyps californianus).[524]
The largest known-ever Cariamiforme and largest phorusrhacid or "terror bird" (highly predatory, flightless birds of America) was Brontornis, which was about 175 cm (69 in) tall at the shoulder, could raise its head 2.8 m (9 ft 2 in) above the ground and could have weighed as much as 400 kg (880 lb).[525] The immense phorusrhacid Kelenken stood 3 m (9.8 ft) tall[526][527] with a skull 716 mm (28.2 in) long (460 mm (18 in) of which was beak), had the largest head of any known bird.[526] South American Phorusrhacos stood 2.4-2.7 m (7.9-8.8 ft) tall, and weighed nearly 130 kilograms (290 lb), as much as a male ostrich.[528][529] The largest North American phorusrhacid was Titanis, which reached a height of approximately 2.5 m (8.2 ft),[530] slightly taller than an African forest elephant.
The tallest known bird was the South Island giant moa (Dinornis robustus), part of the moa family of New Zealand that went extinct about 500 years ago. It stood up to 3.7 m (12 ft) tall,[540] and weighed approximately half as much as a large elephant bird due to its comparatively slender frame.[541]
The largest bird in the fossil record may be the extinct elephant birds (Vorombe, Aepyornis) of Madagascar, which were related to the ostrich. They exceeded 3 m (9.8 ft) in height and 500 kilograms (1,100 lb) in weight.[541]
The largest pigeon relative known was the dodo (Raphus cucullatus), possibly exceeding 1 m (3.3 ft) in height and weighing as much as 28 kg (62 lb), although recent estimates have indicated that an average wild dodo weighed much less at approximately 10.2 kg (22 lb).[547][548]
Pheasants, turkeys, gamebirds and allies (Galliformes)
The largest known cormorant was the spectacled cormorant of the North Pacific (Phalacrocorax perspicillatus), which became extinct around 1850 and averaged around 6.4 kg (14 lb) and 1.15 m (3 ft 9 in).[492]
The largest known darter was Giganhinga with estimated weight about 17.7 kg (39 lb),[487] earlier study even claims 25.7 kg (57 lb).[550]
The largest known of the Odontopterygiformes— a group which has been variously allied with Procellariiformes, Pelecaniformes and Anseriformes and the largest flying birds of all time other than Argentavis were the huge Pelagornis, Cyphornis, Dasornis, Gigantornis and Osteodontornis.[citation needed] They had a wingspan of 5.5–6 m (18–20 ft) and stood about 1.2 m (3 ft 11 in) tall.[citation needed] Exact size estimates and judging which one was largest are not yet possible for these birds, as their bones were extremely thin-walled, light and fragile, and thus most are only known from very incomplete remains.[citation needed]
The largest known woodpecker is the possibly extinct imperial woodpecker (Campephilus imperialis) with a total length of about 56–60 cm (22–24 in).[553]
One of the heaviest penguins ever known is Kumimanu fordycei, with a body mass estimate of 148 to 159.7 kg (326 to 352 lb), derived from humerus measurements.[555] Another example is Palaeeudyptes klekowskii of Antarctica, with a bill-to-tail length estimated at 2.02 m (6 ft 8 in) and an estimated body weight of 84.2 kg (186 lb), slightly smaller than previous estimates.[555][556] The Eocene Anthropornis nordenskjoeldi is comparable in size, and was once estimated to reach lengths of 2.05 m (6 ft 9 in) and a weight of 108 kg (238 lb).[557] However, recent estimation from humerus measurements put A. nordenskjoeldi more in the range of 67 kg (148 lb) in weight.[555] Other large penguins include the New Zealand giant penguin (Pachydyptes pondeorsus) weighing around 65.4 to 94.6 kg (144 to 209 lb), and Icadyptes salasi at 52.8 to 73.0 kg (116.4 to 160.9 lb).[558][555]
The largest known frog ever was an as yet unnamed Eocene species that was about 58–59-centimetre-long (22.8–23.2 in).[561] The Late CretaceousBeelzebufo grew to at least 23.2 cm (9.1 in) (snout-vent length), which is around the size of a modern African bullfrog.[562]
The longest member of this group was Eogyrinus attheyi, species sometimes placed under genus Pholiderpeton.[568] Its skull had length about 41 cm (16 in).[569]
The largest known temnospondyl amphibian is Prionosuchus, which grew to lengths of 9 m (30 ft).[560] Another huge temnospondyl was Mastodonsaurus giganteus at 6 m (20 ft) long.[570] Unnamed species of temnospondyl from Lesotho is partial, but possible body length estimation is 7 m (23 ft).[571]
The largest known placoderm was the giant predatory Dunkleosteus. The largest and most well known species was D. terrelli, various estimate put its length around 4.1–10 m (13.5–32.8 ft) in length and 1–4 t (1.1–4.4 short tons) in weight.[577] Another large placoderm, Titanichthys, may have rivaled it in size.[578]Titanichthys is estimated to have a length around 4.1–7.5 m (13–25 ft)[577][579][580][581]
Species in the extinct genus Otodus were huge. A giant shark, Otodus megalodon[582][583][584] is by far the biggest mackerel shark ever known.[585] Most estimates of megalodon's size extrapolate from teeth, with maximum length estimates up to 10.6–20 m (35–66 ft)[583][584][586] and average length estimates of 10.5 m (34 ft).[587][588] Due to fragmentary remains, there have been many contradictory size estimates for megalodon, as they can only be drawn from fossil teeth and vertebrae.[589]: 87 [590] Mature male megalodon may have had a body mass of 12.6 to 33.9 metric tons (13.9 to 37.4 short tons), and mature females may have been 27.4 to 59.4 metric tons (30.2 to 65.5 short tons), assuming that males could range in length from 10.5 to 14.3 m (34 to 47 ft) and females 13.3 to 17 m (44 to 56 ft).[591] Related to megalodon, Otodus angustidens and O. chubutensis reached the large sizes too. Each was estimated at 9.3 m (31 ft)[592] and 12.2 m (40 ft),[593] respectively.
The heaviest thresher shark was likely Alopias grandis. It was similar in size or even larger than the extant great white shark and probably did not have an elongated dorsal tail, characteristic of modern relatives.[597]
The CenozoicHemipristis serra was considerably larger than its modern-day relatives and had much larger teeth. Its total length is estimated to be at 6 metres (20 ft) long.[598]
One of the largest hybodontiforms was the Jurassic Asteracanthus with body length of up to 3 m (9.8 ft).[599]Crassodus reifi is known from less materials, however it is estimated that reached over 3 m (9.8 ft).[600]
The largest known eugeneodont is an as-yet unnamed species of Helicoprion discovered in Idaho. The specimens suggest an animal that possibly exceeded 12 m (39 ft) in length.[603] Another fairly large eugeneodont is Parahelicoprion. Being more slimmer than Helicoprion, it reached nearly the same size,[603] possibly up to 12 m (39 ft) in length.[604] Both had the largest sizes among the animals of Paleozoic era.[605][604]
Not only the largest known rhizodont, but also the largest lobe-finned fish was the 5.63–7 m (18.5–23.0 ft) long Rhizodus.[609][577] Another large rhizodonts were Strepsodus with estimated length around 3–5 m (9.8–16.4 ft) and Barameda estimated at 3–4 m (9.8–13.1 ft) in length.[610][611]
The largest known fossil sturgeon is "Acipenser" gigantissimus known from fragmentary remains, which is estimated to reach up to 5.8 m (19 ft).[613]
The largest known fossil paddlefish is unnamed remain from Judith River Formation, it may exceeded 2 m (6 ft 7 in), known remains exceeded size of recently extinct Chinese paddlefish, which scientifically reported to exceed 3 m (9.8 ft).[614]
Megalampris was likely the largest fossil opah. This fish was around 4 m (13 ft) in length when alive, which is twice the length of the largest living opah species, Lampris guttatus.[622]
Cambriankinorhynchs from Qingjiang biota, also known as "mud dragons", reached 4 cm (1.6 in) in length, much larger than extant relatives that grow only a few millimeters in length.[632][633]
Based on the findings of mouthparts, the Cambrian gilled lobopodianOmnidens amplus is estimated to have been 1.5 metres (4.9 ft).[634] It is also known as the largest Cambrian animal known to exist.[634]
Mongolarachne jurassica is the largest described fossil spider, with the total body length of female is approximately 24.6 mm (0.97 in) while the front legs reach about 56.5 mm (2.22 in) in length.[649]Dinodiplura ambulacra had larger body length, combined length of carapace and opisthosoma reaches 26.15 mm (1.030 in).[650]
The largest of prehistoric whipscorpions and possibly the largest-known whipscorpion ever discovered[651] was Mesoproctus rayoli. The type specimen has body length reaching 65.9 mm (2.59 in) with a carapace of 25.7 mm (1.01 in) in length, while another specimen has a carapace of 32.5 mm (1.28 in) in length and 16 mm (0.63 in) in width, comparable or even larger than the extant Mastigoproctus.[652][653]
Retifacies probably reached up to 55 cm (22 in).[657]Tegopelte is another one example of large non-trilobite artiopod, reached 280 mm (11 in) long[658] and was the largest of the Burgess Shale bilaterians, surpassing all other benthic organisms by at least twice.[658]
Some of trilobites exceeded 60 cm (24 in) in length. A nearly complete specimen of Isotelus rex from Manitoba attained a length over 70 cm (28 in), and an Ogyginus forteyi from Portugal was almost as long. Fragments of trilobites suggest even larger record sizes. An isolated pygidium of Hungioides bohemicus implies that the full animal was 90 cm (35 in) long.[659]
The largest known myriapod by far was Arthropleura. Measuring 2.5 metres (8 ft 2 in) long[660] and 50 centimetres (20 in) wide.[661] Some specimens could have been even larger, up to 2.63 metres (8 ft 8 in) in length and 50 kilograms (110 lb) in weight.[662][663]
The largest known of this group was the giant ant Titanomyrma giganteum with queens growing to 6 cm (2.4 in). It had a wingspan of 15 cm (5.9 in).[667]
Chresmodidae had long specialized legs like of the modern Gerridae family. One of the Chresmodidae, Chresmoda obscura, could have reached a size of about 19 centimetres (7.5 in).[675]
Some Carboniferous cockroach-like insects grouping in Blattoptera like Archoblattina beecheri[681] and Necymylacris (Xenoblatta) scudderi[682][683] could reach around 9 centimetres in total length, which is comparable to a modern Megaloblatta longipennis.
The largest known palaeodictyopteran was Mazothairos, with an estimated wingspan of up to 560 mm (22 in).[693] If a subcircular wing known from Piesberg Quarry belongs to a palaeodictyopteran, it possibly had single wing length at least 30 cm (12 in).[694]
Archaeognatha (jumping bristletails) and other wingless primitive insects
The largest known machilid is Triassic Gigamachilis, with 40 millimetres (1.6 in) body length not counting the length of the filament, and estimated total length about 80 millimetres (3.1 in).[695]
The largest specimens of the extinct suborder Monura reached 30 millimetres (1.2 in) or more, not counting the length of the filament.[696]
Although Ramsdelepidion was once considered as a 60 millimetres (2.4 in)-long silverfish,[697] it was later considered that classification is uncertain and just treated as stem group insect.[698]
The wingless early insect Carbotriplura had body length about 103 millimetres (4.1 in) without tail filaments.[699]
The Cambrian stem-chaetognathanTimorebestia koprii had reached up to 20 cm (7.9 in) in body length and 30 cm (12 in) including the antennae.[700]Capinatator had a third of length, about 10 cm (3.9 in), but it is not considered as stem member and still had length similar to the largest modern arrow worms.[700][701]
Websteroprion is the largest known fossil eunicidanannelid, with estimated length ranges 0.42–8.3 m (1 ft 5 in – 27 ft 3 in), however comparison with closely related extant taxa indicates length around 1–2 m (3 ft 3 in – 6 ft 7 in).[702] It also had the biggest scolecodonts of any prehistoric polychaete, up to 13.2 mm (0.52 in) in length and possibly larger.[702]
Pebasiconcha immanis is the largest land snail ever known, shell height is 25.6 cm (10.1 in) with a partial specimen that may exceed 30 cm (12 in) in height.[706]
The largest known bivalve ever as well as the largest inoceramid was Platyceramus platinus, a giant that usually had an axial length of 1 m (3 ft 3 in), but some individuals could reach an axial length of up to 3 m (9.8 ft).[707] Another large prehistoric bivalve was Inoceramus. In 1952, 187 cm (6.14 ft)-long specimen of Inoceramus steenstrupi was found in the Late Cretaceous deposits of Greenland.[708]
Some Permian alatoconchid genus like Shikamaia had shell length about 1 m (3 ft 3 in).[709] Previous estimation reconstructed length of Shikamaia around 1.6 m (5 ft 3 in).[710]
The longest ostreid is Konbostrea, with shell height reaching up to 1.2 m (3 ft 11 in).[711]
The largest and longest known of nautiloids was Endoceras giganteum with a shell length of 5.73 m (18.8 ft). There is a record of individual whose shell length had reached 9.14 m (30.0 ft), but it is doubtful.[714]
The largest known ammonite was Parapuzosia seppenradensis.[715] A partial fossil specimen found in Germany had a shell diameter of 1.95 m (6 ft 5 in), but the living chamber was incomplete, so the estimated shell diameter was probably about 3.5 m (11 ft) and weighed about 705 kg (1,554 lb) when it was alive.[716] However, a later study estimates shell diameter up to around 2 m (6 ft 7 in).[717]
The largest known belemnite was Megateuthis gigantea, reaching about 50 and 700 mm (2.0 and 27.6 in) in maximum diameter and length of rostrum, respectively.[718]
Squids, octopuses, cuttlefishes and allies (Neocoleoidea)
OctopodEnchoteuthis melanae (considered as specimen of Tusoteuthis longa) had mantle length up to 2 metres (6 ft 7 in), comparable to the modern-day giant squid. Previously, this taxon was considered similar to the giant squid, with total length including arms over 10 metres (33 ft). However, considering other fossil relatives, total length including arms is estimated to be around 3 metres (9.8 ft).[719]
Longest specimens of Trepassia wardae (also known as Charnia wardi) reached 185 cm (73 in) in length.[729]Charnia masoni is known from specimens as small as only 1 cm (0.39 in), up to the largest specimens of 66 cm (26 in) in length.[730]
^Romano, Marco; Citton, Paolo; Maganuco, Simone; Sacchi, Eva; Caratelli, Martina; Ronchi, Ausonio; Nicosia, Umberto (May 2019). "New basal synapsid discovery at the Permian outcrop of Torre del Porticciolo (Alghero, Italy)". Geological Journal. 54 (3): 1554–1566. Bibcode:2019GeolJ..54.1554R. doi:10.1002/gj.3250. S2CID133755506.
^"Subcommission on Permian Stratigraphy"(PDF). permian.stratigraphy.org. International Commission on Stratigraphy International Union of Geological Sciences. Archived(PDF) from the original on 3 December 2018. Retrieved 8 September 2022.
^van Valkenburgh, Blaire; Jenkins, Ian (2002). "Evolutionary Patterns in the History of Permo-Triassic and Cenozoic synapsid predators". Paleontological Society Papers 8: 267–288.
^Pages 158–159 in: Angielczyk, Kenneth D.; Kammerer, Christian F. (2018). "Non-Mammalian synapsids: The deep roots of the mammalian family tree". Mammalian Evolution, Diversity and Systematics. pp. 117–198. doi:10.1515/9783110341553-005. ISBN978-3-11-034155-3.
^J. Van Den Heever (1987), Dissertation Presented for the Degree of Doctor of Philosophy at the University of Stellenbosch
^Lydekker, R. (1908). "The Year's Vertebrate Palæontology". Science Progress in the Twentieth Century (1906-1916). 2 (7): 501–524. JSTOR43776634.
^Broom, Robert (1903). "On Some New Primitive Theriodonts". Annals of the South African Museum. 4.
^Williamson, Thomas E.; Brusatte, Stephen L.; Secord, Ross; Shelley, Sarah (May 2016). "A new taeniolabidoid multituberculate (Mammalia) from the middle Puercan of the Nacimiento Formation, New Mexico, and a revision of taeniolabidoid systematics and phylogeny: Revision of Taeniolabidoidea". Zoological Journal of the Linnean Society. 177 (1): 183–208. doi:10.1111/zoj.12336.
^Prevosti, Francisco J.; Forasiepi, Analía; Zimicz, Natalia (5 November 2011). "The Evolution of the Cenozoic Terrestrial Mammalian Predator Guild in South America: Competition or Replacement?". Journal of Mammalian Evolution. 20 (1): 3–21. doi:10.1007/s10914-011-9175-9. hdl:11336/2663. S2CID15751319.
^Ercoli, Marcos Darío; Prevosti, Francisco Juan (1 December 2011). "Estimación de Masa de las Especies de Sparassodonta (Mammalia, Metatheria) de Edad Santacrucense (Mioceno Temprano) a Partir del Tamaño del Centroide de los Elementos Apendiculares: Inferencias Paleoecológicas" [Mass Estimation of the Holy Cross (Early Miocene) Sparassodonta (Mammalia, Metatheria) Species from the Centroid Size of the Appendicular Elements: Paleoecological Inferences]. Ameghiniana (in Spanish). 48 (4): 462–479. doi:10.5710/amgh.v48i4(347). S2CID129838311.
^Forasiepi, Analía M.; Judith Babot, M.; Zimicz, Natalia (3 June 2015). "Australohyaena antiqua (Mammalia, Metatheria, Sparassodonta), a large predator from the Late Oligocene of Patagonia". Journal of Systematic Palaeontology. 13 (6): 503–525. Bibcode:2015JSPal..13..503F. doi:10.1080/14772019.2014.926403. hdl:11336/59430.
^Alloing-Séguier, Léanie; Sánchez-Villagra, Marcelo R.; Lee, Michael S. Y.; Lebrun, Renaud (2013). "The Bony Labyrinth in Diprotodontian Marsupial Mammals: Diversity in Extant and Extinct Forms and Relationships with Size and Phylogeny". Journal of Mammalian Evolution. 20 (3): 191–198. doi:10.1007/s10914-013-9228-3. S2CID16385939.
^Wroe, S.; Myers, T. J.; Wells, R. T.; Gillespie, A. (1999). "Estimating the weight of the Pleistocene marsupial lion, Thylacoleo carnifex (Thylacoleonidae:Marsupialia): implications for the ecomorphology of a marsupial super-predator and hypotheses of impoverishment of Australian marsupial carnivore faunas". Australian Journal of Zoology. 47 (5): 489. doi:10.1071/ZO99006.
^Helgen, K. M.; Wells, R. T.; Kear, B. P.; Gerdtz, W. R.; Flannery, T. F. (2006). "Ecological and evolutionary significance of sizes of giant extinct kangaroos". Australian Journal of Zoology. 54 (4): 293–303. doi:10.1071/ZO05077.
^Uhen, Mark D.; Gingerich, Philip D. (1995). "Evolution of Coryphodon (Mammalia, Pantodonta) in the Late Paleocene and Early Eocene of Northwestern Wyoming". Contributions from the Museum of Paleontology, University of Michigan. 29 (10): 264. hdl:2027.42/48649. OCLC742731820.
^MacPhee, R. D. E. (1994). "Morphology, adaptations, and relationships of Plesiorycteropus : And a diagnosis of a new order of eutherian mammals". Bulletin of the American Museum of Natural History (220): 148. hdl:2246/828.
^Osborn, Henry Fairfield; Olsen, George; Central Asiatic Expeditions (1924). "Andrewsarchus, giant mesonychid of Mongolia". American Museum Novitates (146). hdl:2246/3226.
^Tabuce, Rodolphe; Clavel, Julien; Antunes, Miguel Telles (February 2011). "A structural intermediate between triisodontids and mesonychians (Mammalia, Acreodi) from the earliest Eocene of Portugal". Naturwissenschaften. 98 (2): 145–155. Bibcode:2011NW.....98..145T. doi:10.1007/s00114-010-0747-y. PMID21181109.
^Kurten, B.; Anderson, E. (1980). "Order Artiodactyla". Pleistocene mammals of North America (1st ed.). New York: Columbia University Press. pp. 295–339. ISBN0-231-03733-3.
^ abCamps, Gabriel (1992). "Bubalus antiquus". In Camps, Gabriel (ed.). Encyclopédie Berbère (in French). Aix-en-Provence: Edisud. pp. 1642–1647. doi:10.4000/encyclopedieberbere.1875. Archived from the original on 18 July 2020. Retrieved 31 August 2022.
^Kysely, René. "Aurochs and potential crossbreeding with domestic cattle in Central Europe in the Eneolithic period. A metric analysis of bones from the archaeological site of Kutná Hora-Denemark (Czech Republic)". Anthropozoologica. 43 (2): 2008.
^Churchill, S.E.; Brink, J.S.; Berger, L.R.; Hutchison, R.A.; Rossouw, L.; Stynder, D.; Hancox, P.J.; Brandt, D.; Woodborne, S.; Loock, J.C.; Scott, L.; Ungar, P. (2000). "Erfkroon: a new Florisian fossil locality from fluvial contexts in the western Free State, South Africa". South African Journal of Science. 96 (4): 161–163. hdl:10520/AJA00382353_8897.
^Kevrekidis, Charalampos; Kostopoulos, Dimitris S. (2017). The southernmost occurrence of Cervalces latifrons (Johnson, 1874) (Artiodactyla: Cervidae) in Europe. 44. Treffen des Arbeitskreises Wirbeltierpaläontologie, 24-26.3.2017, Münster. doi:10.13140/RG.2.2.24751.53928.
^"Cervalces". Escenarios prehistóricos (in Spanish). Laignoranciadelconocimiento.blogspot.com.es. 23 December 2011. Archived from the original on 27 January 2022. Retrieved 11 October 2022.
^Janis, Christine M.; Theodor, Jessica M.; Boisvert, Bethany (14 March 2002). "Locomotor evolution in camels revisited: a quantitative analysis of pedal anatomy and the acquisition of the pacing gait". Journal of Vertebrate Paleontology. 22 (1): 110–121. doi:10.1671/0272-4634(2002)022[0110:LEICRA]2.0.CO;2.
^Mendoza, M.; Janis, C. M.; Palmqvist, P. (September 2006). "Estimating the body mass of extinct ungulates: a study on the use of multiple regression". Journal of Zoology. 270 (1): 90–101. doi:10.1111/j.1469-7998.2006.00094.x.
^Anthony J. Stuart, 2021, Vanished Giants: The Lost World of the Ice Age, "6.17 Yesterday's Camel: Camelops Hesternus", p.99, University of Chicago Press
^Gingerich, P. D.; Arif, M; Bhatti, M Akram; Anwar, M; Sanders, William J (1997). "Basilosaurus drazindai and Basiloterus hussaini, New Archaeoceti (Mammalia, Cetacea) from the Middle Eocene Drazinda Formation, with a Revised Interpretation of Ages of Whale-Bearing Strata in the Kirthar Group of the Sulaiman Range, Punjab (Pakistan)". Contributions from the Museum of Paleontology, University of Michigan. 30 (2): 55–81. hdl:2027.42/48652. OCLC742731913.
^Kellogg R. A review of the Archaeoceti. Carnegie Institution of Washington Publications. 1936; 482: 1–366.
^ abDeméré, T.A.; Berta, A.; McGowen, M.R. (2005). "The taxonomic and evolutionary history of fossil and modern balaenopteroid mysticetes". Journal of Mammalian Evolution. 12 (1/2): 99–143. doi:10.1007/s10914-005-6944-3. S2CID90231.
^Fortelius, M.; Kappelman, J. (1993). "The largest land mammal ever imagined". Zoological Journal of the Linnean Society. 108: 85–101. doi:10.1111/j.1096-3642.1993.tb02560.x.
^Maclaren, Jamie A; Hulbert, Richard C; Wallace, Steven C; Nauwelaerts, Sandra (5 October 2018). "A morphometric analysis of the forelimb in the genus Tapirus (Perissodactyla: Tapiridae) reveals influences of habitat, phylogeny and size through time and across geographical space". Zoological Journal of the Linnean Society. 184 (2): 499–515. doi:10.1093/zoolinnean/zly019.
^Robinet, Céline; Remy, Jean A.; Laurent, Yves; Danilo, Laure; Lihoreau, Fabrice (2015). "A new genus of Lophiodontidae (Perissodactyla, Mammalia) from the early Eocene of La Borie (Southern France) and the origin of the genus Lophiodon Cuvier, 1822". Geobios. 48 (1): 25–38. Bibcode:2015Geobi..48...25R. doi:10.1016/j.geobios.2014.11.003.
^ abBadiola, Ainara; Perales-Gogenola, Leire; Astibia, Humberto; Suberbiola, Xabier Pereda (2022). "A synthesis of Eocene equoids (Perissodactyla, Mammalia) from the Iberian Peninsula: new signs of endemism". Historical Biology. 34 (8): 1623–1631. Bibcode:2022HBio...34.1623B. doi:10.1080/08912963.2022.2060098. S2CID248164842.
^Franzen, Jens L. (1968). Revision der Gattung Palaeotherium Cuvier, 1804 (Palaeotheriidae, Perissodactyla, Mammalia) (Inaugural Dissertation). Vol. 1. University of Freiburg.
^ abSoibelzon, Leopoldo H.; Schubert, Blaine W. (January 2011). "The largest known bear, Arctotherium angustidens , from the early Pleistocene Pampean region of Argentina: with a discussion of size and diet trends in bears". Journal of Paleontology. 85 (1): 69–75. doi:10.1666/10-037.1. hdl:11336/104215.
^Figueirido, Borja; Pérez-Claros, Juan A.; Torregrosa, Vanessa; Martín-Serra, Alberto; Palmqvist, Paul (29 January 2010). "Demythologizing Arctodus simus , the 'short-faced' long-legged and predaceous bear that never was". Journal of Vertebrate Paleontology. 30 (1): 262–275. Bibcode:2010JVPal..30..262F. doi:10.1080/02724630903416027. hdl:10630/33066.
^Churchill, Morgan; Clementz, Mark T.; Kohno, Naoki (January 2015). "Cope's rule and the evolution of body size in Pinnipedimorpha (Mammalia: Carnivora)". Evolution. 69 (1): 201–215. doi:10.1111/evo.12560. PMID25355195.
^Turner, Alan; Antón, Mauricio (2004). Evolving eden: an illustrated guide to the evolution of the African large-mammal fauna. New York: Columbia University Press. pp. 106–107. ISBN0-231-11944-5. OCLC53900492.
^Orlov, Jury A. (June 1948). "Perunium Ursogulo Orlov, A New Gigantic Extinct Mustelid (A Contribution to the Morphology of the Skull and Brain and to the Phylogeny of Mustelidae)". Acta Zoologica. 29 (1): 63–105. doi:10.1111/j.1463-6395.1948.tb00028.x.
^Valenciano, Alberto; Abella, Juan; Sanisidro, Oscar; Hartstone-Rose, Adam; Álvarez-Sierra, María Ángeles; Morales, Jorge (4 July 2015). "Complete description of the skull and mandible of the giant mustelid Eomellivora piveteaui Ozansoy, 1965 (Mammalia, Carnivora, Mustelidae), from Batallones (MN10), late Miocene (Madrid, Spain)". Journal of Vertebrate Paleontology. 35 (4): e934570. Bibcode:2015JVPal..35E4570V. doi:10.1080/02724634.2014.934570.
^Forasiepi, Analía M.; Prevosti, Francisco J. (2018). Evolution of South American mammalian predators during the Cenozoic: paleobiogeographic and paleoenvironmental contingencies. Cham: Springer. pp. 124–125. ISBN978-3-319-03701-1.
^Boudadi-Maligne, Myriam (October 2012). "Une nouvelle sous-espèce de loup (Canis lupus maximus nov. subsp.) dans le Pléistocène supérieur d'Europe occidentale". Comptes Rendus Palevol. 11 (7): 475–484. Bibcode:2012CRPal..11..475B. doi:10.1016/j.crpv.2012.04.003.
^F.BERTÈ, DAVIDE; PANDOLFI, LUCA (30 November 2014). "CANIS LUPUS (MAMMALIA, CANIDAE) FROM THE LATE PLEISTOCENE DEPOSIT OF AVETRANA (TARANTO, SOUTHERN ITALY)". Rivista italiana di Paleontologia e Stratigrafia. 120. doi:10.13130/2039-4942/6079.
^Jordi Agusti and Mauricio Anton: Mammoths, Sabertooths, and Hominids 65 million years of Mammalian Evolution in Europe, Columbia University Press, 2002, pp.81–83
^Peigné, S.; de Bonis, L.; Likius, A.; Mackaye, H. T.; Vignaud, P.; Brunet, M. (2005). "A new machairodontine (Carnivora, Felidae) from the Late Miocene hominid locality of TM 266, Toros-Menalla, Chad". Comptes Rendus Palevol. 4 (3): 243–253. Bibcode:2005CRPal...4..243P. doi:10.1016/j.crpv.2004.10.002.
^Orcutt, John D.; Calede, Jonathan J.M. (September 2021). "Quantitative Analyses of Feliform Humeri Reveal the Existence of a Very Large Cat in North America During the Miocene". Journal of Mammalian Evolution. 28 (3): 729–751. doi:10.1007/s10914-021-09540-1.
^Manthi, Fredrick K.; Brown, Francis H.; Plavcan, Michael J.; Werdelin, Lars (March 2018). "Gigantic lion, Panthera leo , from the Pleistocene of Natodomeri, eastern Africa". Journal of Paleontology. 92 (2): 305–312. Bibcode:2018JPal...92..305M. doi:10.1017/jpa.2017.68.
^Lane, H. H. (1947). "Survey of the Fossil Vertebrates of Kansas: Part V: The Mammals (Continued)". Transactions of the Kansas Academy of Science. 50 (3/4): 273–314. doi:10.2307/3625600. JSTOR3625600.
^Antón, Mauricio (22 November 2013). Sabertooth. Indiana University Press. pp. 104–107. ISBN978-0-253-01049-0. Retrieved 26 August 2022.
^Alan Turner, National Geographic Prehistoric Mammals National Geographic, 2004, ISBN0-7922-7134-3
^ abN. N. Kramarenko (1974). Зоогеография палеогена Азии [Zoogeography of Paleogene of Asia] (in Russian). Publishing office "Nauka". pp. 113–114. Retrieved 18 September 2022.
^O'Leary, Maureen A.; Lucas, Spencer G.; Williamson, Thomas E. (2000). "A new specimen of Ankalagon (Mammalia, Mesonychia) and evidence of sexual dimorphism in mesonychians". Journal of Vertebrate Paleontology. 20 (2): 387–93. doi:10.1671/0272-4634(2000)020[0387:ANSOAM]2.0.CO;2. JSTOR4524103. S2CID86542114.
^Villier, Boris (18 January 2013). "Deinogalerix: a giant hedgehog from the Miocene". Sezione di Museologia Scientifica e Naturalistica. 6: 93–102. doi:10.15160/1824-2707/417.
^Freudenthal, M. (1972). "Deinogalerix koenigswaldi nov. gen., nov. spec., a giant insectivore from the Neogene of Italy". Scripta Geologica. 14: 1–19.
^Biknevicus, A. R.; McFarlane, D. A.; MacPhee, R. D. E. (1993). "Body size in Amblyrhiza inundata (Rodentia: Caviomorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: Estimates and implications". American Museum Novitates (3079). New York: American Museum of Natural History: 1–25. hdl:2246/4976.
^Swinehart, Anthony L.; Richards, Ronald L. (22 December 2001). "Palaeoecology of a Northeast Indiana Wetland harboring remains of the pleistocene giant beaver (Castoroides ohioenis)". Proceedings of the Indiana Academy of Science: 151–167. S2CID130809143. GaleA83518043.
^Gaudin, Timothy J.; Emry, Robert J.; Wible, John R. (December 2009). "The Phylogeny of Living and Extinct Pangolins (Mammalia, Pholidota) and Associated Taxa: A Morphology Based Analysis". Journal of Mammalian Evolution. 16 (4): 235–305. doi:10.1007/s10914-009-9119-9.
^Hooijer, D.A. (1947). "A femur of Manis palaeojavanica Dubois from Western Java". Proceedings of the Koninklijke Nederlandsche Akademie van Wetenschappen. 50 (4): 423–418.
^Wibowo, Andri (2020). Steps of the Asian Giants: Modeling the Body Size Related Foraging Ecology of Meganthropus palaeojavanicus, a 8 Feet Hominid in Central Java (Preprint). doi:10.20944/preprints202011.0504.v1.
^Zanolli, Clément; Kullmer, Ottmar; Kelley, Jay; Bacon, Anne-Marie; Demeter, Fabrice; Dumoncel, Jean; Fiorenza, Luca; Grine, Frederick E.; Hublin, Jean-Jacques; Nguyen, Anh Tuan; Nguyen, Thi Mai Huong; Pan, Lei; Schillinger, Burkhard; Schrenk, Friedemann; Skinner, Matthew M.; Ji, Xueping; Macchiarelli, Roberto (8 April 2019). "Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia". Nature Ecology & Evolution. 3 (5): 755–764. Bibcode:2019NatEE...3..755Z. doi:10.1038/s41559-019-0860-z. PMID30962558.
^Migliano, Andrea Bamberg; Guillon, Myrtille (December 2012). "The Effects of Mortality, Subsistence, and Ecology on Human Adult Height and Implications for Homo Evolution". Current Anthropology. 53 (S6): S359–S368. doi:10.1086/667694.
^Delson, Eric; Terranova, Carl J.; Jungers, William J.; Sargis, Sargis; Jablonski, Nina G.; Dechow, Paul C. (2000). "Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa". Anthropological Papers of the American Museum of Natural History. 83: 1–159.
^Jablonski, N.G.; Leakey, M.G.; Anton, M. (2008). "Systematic Paleontology of the Cercopithecines". In Jablonski, N.G.; Leakey, M.G. (eds.). The Fossil Monkeys. Koobi Fora Research Project. Vol. 6. San Francisco: California Academy of Sciences. pp. 103–300. Retrieved 10 September 2022.
^Dunn, Rachel H. (May 2010). "Additional postcranial remains of omomyid primates from the Uinta Formation, Utah and implications for the locomotor behavior of large-bodied omomyids". Journal of Human Evolution. 58 (5): 406–417. Bibcode:2010JHumE..58..406D. doi:10.1016/j.jhevol.2010.02.010. PMID20381124.
^Jungers, W. L.; Demes, B.; Godfrey, L. R. (2008). "How Big were the "Giant" Extinct Lemurs of Madagascar?". In Fleagle, J. G.; Gilbert, C. C. (eds.). Elwyn Simons: A Search for Origins. Developments in Primatology: Progress and Prospects. p. 350. doi:10.1007/978-0-387-73896-3_23. ISBN978-0-387-73895-6.
^ abCrowley, Brooke E.; Godfrey, Laurie R.; Irwin, Mitchell T. (January 2011). "A glance to the past: subfossils, stable isotopes, seed dispersal, and lemur species loss in Southern Madagascar". American Journal of Primatology. 73 (1): 25–37. doi:10.1002/ajp.20817. PMID20205184.
^"Megatherium". BBC > Science & Nature > Animals > Wildfacts. 1 February 2014. Archived from the original on 1 February 2014. Retrieved 29 June 2017.
^Johnson, Steven C. and Madden, Richard H.. Uruguaytheriinae Astrapotheres of Tropical South America. Chapter 22 in "Vertebrate Paleontology in the Neotropics. The Miocene Fauna of La Venta, Colombia". Edited by Richard F. Kay, Richard H. Madden, Richard L. Cifelli, and John J. Flynn. Smithsonian Institution Press. Washington and London.
^Gingerich, Philip D. (1998). "Paleobiological Perspectives on Mesonychia, Archaeoceti, and the Origin of Whales". In Thewissen, J.G.M. (ed.). The emergence of whales: evolutionary patterns in the origin of Cetacea. New York: Plenum Press. pp. 423–450. ISBN978-0-306-45853-8.
^Croft, Darin A.; Gelfo, Javier N.; López, Guillermo M. (30 May 2020). "Splendid Innovation: The Extinct South American Native Ungulates". Annual Review of Earth and Planetary Sciences. 48 (1): 259–290. Bibcode:2020AREPS..48..259C. doi:10.1146/annurev-earth-072619-060126.
^ abHead, Jason J.; Bloch, Jonathan I.; Hastings, Alexander K.; Bourque, Jason R.; Cadena, Edwin A.; Herrera, Fabiany A.; Polly, P. David; Jaramillo, Carlos A. (5 February 2009). "Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures". Nature. 457 (7230): 715–717. Bibcode:2009Natur.457..715H. doi:10.1038/nature07671. PMID19194448.
^Rage, J.-C. (1983). "Palaeophis colossaeus nov. sp. (le plus grand Seprent connu?) de l'Eocène du Mali et le problème du genre chez les Palaeopheinae". Comptes Rendus des Séances de l'Académie des Sciences. 3 (296): 1741–1744.
^McCartney, Jacob; Roberts, Eric; Tapanila, Leif; O'Leary, Maureen (2018). "Large palaeophiid and nigerophiid snakes from Paleogene Trans-Saharan Seaway deposits of Mali". Acta Palaeontologica Polonica. 63. doi:10.4202/app.00442.2017.
^Head, J. & Polly, D. 2004. They might be giants: morphometric methods for reconstructing body size in the world's largest snakes. Journal of Vertebrate Paleontology 24 (Supp. 3), 68A-69A.
^Rio, Jonathan P.; Mannion, Philip D. (4 July 2017). "The osteology of the giant snake Gigantophis garstini from the upper Eocene of North Africa and its bearing on the phylogenetic relationships and biogeography of Madtsoiidae". Journal of Vertebrate Paleontology. 37 (4): e1347179. Bibcode:2017JVPal..37E7179R. doi:10.1080/02724634.2017.1347179. hdl:10044/1/48946. S2CID90335531.
^Scanlon, John D.; Mackness, Brian S. (1 January 2001). "A new giant python from the Pliocene Bluff Downs Local Fauna of northeastern Queensland". Alcheringa: An Australasian Journal of Palaeontology. 25 (4): 425–437. Bibcode:2001Alch...25..425S. doi:10.1080/03115510108619232. S2CID85185368.
^Bailon, Salvador; Bover, Pere; Quintana, Josep; Alcover, Josep Antoni (June 2010). "First fossil record of Vipera Laurenti 1768 'Oriental vipers complex' (Serpentes: Viperidae) from the Early Pliocene of the western Mediterranean islands". Comptes Rendus Palevol. 9 (4): 147–154. doi:10.1016/j.crpv.2010.04.001.
^ abcMolnar, Ralph E. (2004). Dragons in the Dust: The Paleobiology of the Giant Monitor Lizard Megalania. Indiana University Press. pp. 174–175. ISBN978-0-253-34374-1. OCLC52775128.
^Irmis, Randall B. (27 June 2005). "Dragons in the Dust: the Paleobiology of the Giant Monitor Lizard Megalania". Journal of Vertebrate Paleontology. 25 (2): 479. doi:10.1671/0272-4634(2005)025[0479:R]2.0.CO;2.
^Danilov, Igor G.; Obraztsova, Ekaterina M.; Arkhangelsky, Maxim S.; Ivanov, Alexey V.; Averianov, Alexander O. (July 2022). "Protostega gigas and other sea turtles from the Campanian of Eastern Europe, Russia". Cretaceous Research. 135: 105196. Bibcode:2022CrRes.13505196D. doi:10.1016/j.cretres.2022.105196.
^Kear, Benjamin P. (11 September 2006). "Reassessment of Cratochelone Berneyi Longman, 1915, a giant sea turtle from the Early Cretaceous of Australia". Journal of Vertebrate Paleontology. 26 (3): 779–783. doi:10.1671/0272-4634(2006)26[779:ROCBLA]2.0.CO;2.
^Kohler, R. (September 1995). "A new species of the fossil turtle Psephophorus (Order Testudines) from the Eocene of the South Island, New Zealand". Journal of the Royal Society of New Zealand. 25 (3): 371–384. Bibcode:1995JRSNZ..25..371K. doi:10.1080/03014223.1995.9517495.
^ abcdeRhodin, Anders; Thomson, Scott; Georgalis, Georgios; Karl, Hans-Volker; Danilov, Igor; Takahashi, Akio; de la Fuente, Marcelo; Bourque, Jason; Delfino, Massimo; Bour, Roger; Iverson, John; Shaffer, Bradley; Van Dijk, Peter Paul (2015). "Turtles and Tortoises of the World During the Rise and Global Spread of Humanity: First Checklist and Review of Extinct Pleistocene and Holocene Chelonians". Conservation Biology of Freshwater Turtles and Tortoises. Chelonian Research Monographs. Vol. 5. doi:10.3854/crm.5.000e.fossil.checklist.v1.2015. ISBN978-0-9653540-9-7.
^Pérez-García, Adán; Vlachos, Evangelos; Arribas, Alfonso (March 2017). "The last giant continental tortoise of Europe: A survivor in the Spanish Pleistocene site of Fonelas P-1". Palaeogeography, Palaeoclimatology, Palaeoecology. 470: 30–39. Bibcode:2017PPP...470...30P. doi:10.1016/j.palaeo.2017.01.011. hdl:11336/53105.
^ abHead, J. J.; Raza, S. M.; Gingerich, Philip D. (1999). "Drazinderetes tethyensis, a new large trionychid (Reptilia: Testudines) from the marine Eocene Drazinda Formation of the Sulaiman Range, Punjab (Pakistan)". Contributions from the Museum of Paleontology, University of Michigan. 30 (7): 199–214. hdl:2027.42/48657.
^Cadena, Edwin A.; Ksepka, Daniel T.; Jaramillo, Carlos A.; Bloch, Jonathan I. (June 2012). "New pelomedusoid turtles from the late Palaeocene Cerrejón Formation of Colombia and their implications for phylogeny and body size evolution". Journal of Systematic Palaeontology. 10 (2): 313–331. Bibcode:2012JSPal..10..313C. doi:10.1080/14772019.2011.569031.
^Brown, Lauren (October 2019). "The enigmatic palaeoecology and palaeobiogeography of the giant, horned, fossil turtles of Australasia: a review and reanalysis of the data". Herpetological Journal. 29 (4): 252–263. doi:10.33256/hj29.4.252263.
^O'Gorman, J.P.; Santillana, S.; Otero, R.; Reguero, M. (October 2019). "A giant elasmosaurid (Sauropterygia; Plesiosauria) from Antarctica: New information on elasmosaurid body size diversity and aristonectine evolutionary scenarios". Cretaceous Research. 102: 37–58. Bibcode:2019CrRes.102...37O. doi:10.1016/j.cretres.2019.05.004. S2CID181725020.
^Kubo, T.; Mitchell, M. T.; Henderson, D. M. (2012). "Albertonectes vanderveldei, a new elasmosaur (Reptilia, Sauropterygia) from the Upper Cretaceous of Alberta". Journal of Vertebrate Paleontology. 32 (3): 557–572. Bibcode:2012JVPal..32..557K. doi:10.1080/02724634.2012.658124. S2CID129500470.
^Hiller, Norton; Mannering, Al A.; Jones, Craig M.; Cruickshank, Arthur R. I. (30 September 2005). "The nature of Mauisaurus haasti Hector, 1874 (Reptilia: Plesiosauria)". Journal of Vertebrate Paleontology. 25 (3): 588–601. doi:10.1671/0272-4634(2005)025[0588:TNOMHH]2.0.CO;2.
^Hiller, Norton; O’Gorman, José P.; Otero, Rodrigo A.; Mannering, Al A. (3 April 2017). "A reappraisal of the Late Cretaceous Weddellian plesiosaur genus Mauisaurus Hector, 1874". New Zealand Journal of Geology and Geophysics. 60 (2): 112–128. Bibcode:2017NZJGG..60..112H. doi:10.1080/00288306.2017.1281317.
^ abMcHenry, Colin Richard (2009). Devourer of Gods: the palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus (Thesis). hdl:1959.13/935911.[page needed]
^Massare, Judy A.; Wahl, William R.; Ross, Mike; Connely, Melissa V. (January 2014). "Palaeoecology of the marine reptiles of the Redwater Shale Member of the Sundance Formation (Jurassic) of central Wyoming, USA". Geological Magazine. 151 (1): 167–182. Bibcode:2014GeoM..151..167M. doi:10.1017/S0016756813000472.
^Schumacher, Bruce A.; Carpenter, Kenneth; Everhart, Michael J. (May 2013). "A new Cretaceous Pliosaurid (Reptilia, Plesiosauria) from the Carlile Shale (middle Turonian) of Russell County, Kansas". Journal of Vertebrate Paleontology. 33 (3): 613–628. Bibcode:2013JVPal..33..613S. doi:10.1080/02724634.2013.722576.
^Nesbitt, Sterling J.; Brusatte, Stephen L.; Desojo, Julia B.; Liparini, Alexandre; De França, Marco A. G.; Weinbaum, Jonathan C.; Gower, David J. (January 2013). "Rauisuchia". Geological Society, London, Special Publications. 379 (1): 241–274. Bibcode:2013GSLSP.379..241N. doi:10.1144/SP379.1.
^Benton, Michael J. (2014). Vertebrate Palaeontology. John Wiley & Sons. p. 158. ISBN978-1-118-40755-4.
^Liparini, Alexandre; Schultz, Cesar L. (January 2013). "A reconstruction of the thigh musculature of the extinct pseudosuchian Prestosuchus chiniquensis from the Dinodontosaurus Assemblage Zone (Middle Triassic Epoch), Santa Maria 1 Sequence, southern Brazil". Geological Society, London, Special Publications. 379 (1): 441–468. Bibcode:2013GSLSP.379..441L. doi:10.1144/SP379.20.
^Desojo, Julia B.; Heckert, Andrew B.; Martz, Jeffrey W.; Parker, William G.; Schoch, Rainer R.; Small, Bryan J.; Sulej, Tomasz (January 2013). "Aetosauria: a clade of armoured pseudosuchians from the Upper Triassic continental beds". Geological Society, London, Special Publications. 379 (1): 203–239. Bibcode:2013GSLSP.379..203D. doi:10.1144/SP379.17.
^von Baczko, M. Belén; Desojo, Julia. B.; Gower, David J.; Ridgely, Ryan; Bona, Paula; Witmer, Lawrence M. (October 2022). "New digital braincase endocasts of two species of Desmatosuchus and neurocranial diversity within Aetosauria (Archosauria: Pseudosuchia)". The Anatomical Record. 305 (10): 2415–2434. doi:10.1002/ar.24798. hdl:11336/152847. PMID34662509.
^ abPaiva, Ana Laura S.; Godoy, Pedro L.; Souza, Ray B.B.; Klein, Wilfried; Hsiou, Annie S. (October 2022). "Body size estimation of Caimaninae specimens from the Miocene of South America". Journal of South American Earth Sciences. 118: 103970. Bibcode:2022JSAES.11803970P. doi:10.1016/j.jsames.2022.103970.
^Cidade, Giovanne M.; Rincón, Ascanio D.; Solórzano, Andrés (3 October 2021). "New cranial and postcranial elements of Mourasuchus (Alligatoroidea: Caimaninae) from the late Miocene of Venezuela and their palaeobiological implications". Historical Biology. 33 (10): 2387–2399. Bibcode:2021HBio...33.2387C. doi:10.1080/08912963.2020.1795844.
^Stout, Jeremy B. (23 October 2020). "New early Pleistocene Alligator (Eusuchia: Crocodylia) from Florida bridges a gap in Alligator evolution". Zootaxa. 4868 (1): zootaxa.4868.1.3. doi:10.11646/zootaxa.4868.1.3. PMID33311408.
^Head, J. J. (2001). "Systematics and body size of the gigantic, enigmatic crocodyloid Rhamphosuchus crassidens, and the faunal history of Siwalik Group (Miocene) crocodylians". Journal of Vertebrate Paleontology. 21 (Supplement to No. 3): 1–117. doi:10.1080/02724634.2001.10010852. S2CID220414868.
^Riff, Douglas; Aguilera, Orangel A. (June 2008). "The world's largest gharials Gryposuchus: description of G. croizati n. sp. (Crocodylia, Gavialidae) from the Upper Miocene Urumaco Formation, Venezuela". Paläontologische Zeitschrift. 82 (2): 178–195. Bibcode:2008PalZ...82..178R. doi:10.1007/bf02988408.
^Delfino, Massimo; De Vos, John (March 2014). "A giant crocodile in the Dubois Collection from the Pleistocene of Kali Gedeh (Java)". Integrative Zoology. 9 (2): 141–147. doi:10.1111/1749-4877.12065. hdl:2318/141647. PMID24673759.
^Wroe, Stephen (2002). "A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas, and factors influencing their diversity: the myth of reptilian domination and its broader ramifications". Australian Journal of Zoology. 50 (1): 1. doi:10.1071/zo01053.
^Flannery, T. F. (1990). "Pleistocene faunal loss: implications of the aftershock for Australia's past and future". Archaeology in Oceania. 25 (2): 45–55. doi:10.1002/j.1834-4453.1990.tb00232.x.
^Storrs, G. W.; Efimov, M. B. (2000). "Mesozoic crocodyliforms of north-central Eurasia". In Michael J. Benton; Mikhail A. Shishkin; David M. Unwin; Evgenii N. Kurochkin (eds.). The Age of Dinosaurs in Russia and Mongolia. Cambridge University Press. pp. 402–419.
^Lyon, Gabrielle (9 December 2001). "Fact Sheet". SuperCroc. Project Exploration. Retrieved 22 September 2007.
^ abMartin, Jeremy E.; Pochat-Cottilloux, Yohan; Laurent, Yves; Perrier, Vincent; Robert, Emmanuel; Antoine, Pierre-Olivier (28 October 2022). "Anatomy and phylogeny of an exceptionally large sebecid (Crocodylomorpha) from the middle Eocene of southern France". Journal of Vertebrate Paleontology. 42 (4). Bibcode:2022JVPal..42E3828M. doi:10.1080/02724634.2023.2193828.
^Cortés, Dirley; Larsson, Hans C.E.; Maxwell, Erin E.; Parra Ruge, Mary Luz; Patarroyo, Pedro; Wilson, Jeffrey A. (6 October 2019). "An Early Cretaceous Teleosauroid (Crocodylomorpha: Thalattosuchia) from Colombia". Ameghiniana. 56 (5): 365. doi:10.5710/amgh.26.09.2019.3269. S2CID210110716.
^Young, Mark T.; de Andrade, Marco Brandalise; Brusatte, Stephen L.; Sakamoto, Manabu; Liston, Jeff (May 2013). "The oldest known metriorhynchid super-predator: a new genus and species from the Middle Jurassic of England, with implications for serration and mandibular evolution in predacious clades". Journal of Systematic Palaeontology. 11 (4): 475–513. Bibcode:2013JSPal..11..475Y. doi:10.1080/14772019.2012.704948.
^Nesbitt, Sterling J.; Irmis, Randall B.; Lucas, Spencer G.; Hunt, Adrian P. (2005). "A giant crocodylomorph from the Upper Triassic of New Mexico". Paläontologische Zeitschrift. 79 (4): 471–478. Bibcode:2005PalZ...79..471N. doi:10.1007/bf02988373. S2CID128541365.
^ abAndres, Brian; Clark, James M.; Xing, Xu (29 January 2010). "A new rhamphorhynchid pterosaur from the Upper Jurassic of Xinjiang, China, and the phylogenetic relationships of basal pterosaurs". Journal of Vertebrate Paleontology. 30 (1): 163–187. Bibcode:2010JVPal..30..163A. doi:10.1080/02724630903409220.
^ abcSander, P. Martin; Griebeler, Eva Maria; Klein, Nicole; Juarbe, Jorge Velez; Wintrich, Tanja; Revell, Liam J.; Schmitz, Lars (24 December 2021). "Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans". Science. 374 (6575): eabf5787. doi:10.1126/science.abf5787. PMID34941418.
^Dodick, J.T.; Modesto, S.P. (1995). "The cranial anatomy of the captorhinid reptile Labidosaurikos meachami from the Lower Permian of Oklahoma". Palaeontology. 38 (3): 687.
^ abPaul, Gregory (31 December 2019). "Determining the Largest Known Land Animal: A Critical Comparison of Differing Methods for Restoring the Volume and Mass of Extinct Animals". Annals of Carnegie Museum. 85 (4): 335. doi:10.2992/007.085.0403.
^Galton, Peter M.; Ayyasami, Krishnan (July 2017). "Purported latest bone of a plated dinosaur (Ornithischia: Stegosauria), a 'dermal plate' from the Maastrichtian (Upper Cretaceous) of southern India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 91–96. doi:10.1127/njgpa/2017/0671.
^Paul, Gregory S.; Larramendi, Asier (11 April 2023). "Body mass estimate of Bruhathkayosaurus and other fragmentary sauropod remains suggest the largest land animals were about as big as the greatest whales". Lethaia. 56 (2): 1–11. Bibcode:2023Letha..56..2.5P. doi:10.18261/let.56.2.5. S2CID259782734.
^de Lapparent, A. F. (1960). "Les dinosauriens du "continental intercalaire" du Sahara central"" [The dinosaurs of the "continental intercalaire" of the central Sahara] (PDF). Mémoires de la Société Géologique de France. Nouvelle Séries (in French). 39 (1–6). Translated by Carrano, Matthew: 1–57.
^Persons, W. Scott; Currie, Philip J.; Erickson, Gregory M. (April 2020). "An Older and Exceptionally Large Adult Specimen of Tyrannosaurus rex". The Anatomical Record. 303 (4): 656–672. doi:10.1002/ar.24118. PMID30897281.
^Coria, R. A.; Currie, P. J. (2002). "The braincase of Giganotosaurus carolinii (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina". Journal of Vertebrate Paleontology. 22 (4): 802–811. doi:10.1671/0272-4634(2002)022[0802:TBOGCD]2.0.CO;2. S2CID85678725.
^Therrien, F.; Henderson, D.M. (2007). "My theropod is bigger than yours...or not: estimating body size from skull length in theropods". Journal of Vertebrate Paleontology. 27 (1): 108–115. doi:10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2. S2CID86025320.
^Vickaryous, M.K., Maryanska, T., & Weishampel, D.B. 2004. Ankylosauria. In: Weishampel, D.B., Dodson, P., & Osmólska, H. (Eds.). The Dinosauria (2nd edition). Berkeley: University of California Press. Pp. 363–392.
^Morris, William J. (1981). "A new species of hadrosaurian dinosaur from the Upper Cretaceous of Baja California: ?Lambeosaurus laticaudus". Journal of Paleontology. 55 (2): 453–462.
^Morris, William J. (1981). "A new species of hadrosaurian dinosaur from the Upper Cretaceous of Baja California: ?Lambeosaurus laticaudus". Journal of Paleontology. 55 (2): 453–462.
^ abPaul, Greg (2010). "The Princeton Field Guide to Dinosaurs". New Jersey: Princeton University Press. p. 335.
^Kirkland, J.I.; Hernández-Rivera, R.; Gates, T.; Paul, G.S.; Nesbitt, S.; Serrano-Brañas, C.I.; Garcia-de la Garza, J.P. (2006). "Large hadrosaurine dinosaurs from the latest Campanian of Coahuila, Mexico". In Lucas, S.G.; Sullivan, R.M. (eds.). Late Cretaceous Vertebrates from the Western Interior(PDF). New Mexico Museum of Natural History and Science Bulletin. Vol. 35. Albuquerque: New Mexico Museum of Natural History and Science. pp. 299–315. Archived(PDF) from the original on 14 July 2019.
^Nye, E.; Feist-Burkhardt, S.; Horne, D.J.; Ross, A.J.; Whittaker, J.E. (2008). "The palaeoenvironment associated with a partial Iguanodon skeleton from the Upper Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks (Ockley, Surrey, UK), based on palynomorphs and ostracods". Cretaceous Research. 29 (3): 417–444. Bibcode:2008CrRes..29..417N. doi:10.1016/j.cretres.2008.01.004.
^ abcdefghiMurray, P. F. & Vickers-Rich, P. (2004)
^ abcDegrange, F. J., Noriega, J. I., & Areta, J. I. (2012). Diversity and paleobiology of the Santacrucian birds. Early Miocene paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation, 138–155.
^Tambussi, C. P., & Degrange, F. J. (2013). The dominance of zoophagous birds: just a cliché?. In South American and Antarctic Continental Cenozoic Birds (pp. 87–102). Springer, Dordrecht.
^ abEric Buffetaut und Delphine Angst: Stratigraphic distribution of large flightless birds in the Palaeogene of Europe and its palaeobiological and palaeogeographical implications. Earth-Science Reviews 32 (2), 2014, S. 394–408.
^ abcdefghijklmnMeat Weights and Nutritional Yield Values for New Zealand Archaeofauna
^ abcEarly Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of Patagonia" [1], geredigeerd door Sergio F. Vizcaíno, Sergio F. Vizcno, Richard F. Kay en M. Susana Bargo
^Fisher, Harvey I. (1945). "Locomotion in the Fossil Vulture Teratornis". The American Midland Naturalist. 33 (3): 725–742. doi:10.2307/2421186. JSTOR2421186.
^ abAreta, J. I.; Noriega, J. I.; Agnolin, F. (2007). "A giant darter (Pelecaniformes: Anhingidae) from the Upper Miocene of Argentina and weight calculation of fossil Anhingidae". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 243 (3): 343–350. doi:10.1127/0077-7749/2007/0243-0343. hdl:11336/80812.
^ abNorthcote, E. Marjorie (April 1982). "SIZE, FORM AND HABIT OF THE EXTINCT MALTESE SWAN CYGNUS FALCONERI". Ibis. 124 (2): 148–158. doi:10.1111/j.1474-919x.1982.tb03753.x.
^Walker, Cyril A.; Dyke, Gareth J. (2009). "Euenantiornithine Birds from the Late Cretaceous of El Brete (argentina)". Irish Journal of Earth Sciences. 27: 15–62. doi:10.1353/ijes.2009.a810006. JSTOR25780698.
^Handley, Warren D.; Chinsamy, Anusuya; Yates, Adam M.; Worthy, Trevor H. (2 September 2016). "Sexual dimorphism in the late Miocene mihirung Dromornis stirtoni (Aves: Dromornithidae) from the Alcoota Local Fauna of central Australia". Journal of Vertebrate Paleontology. 36 (5): e1180298. Bibcode:2016JVPal..36E0298H. doi:10.1080/02724634.2016.1180298.
^Gerald Mayr: Gastornithidae. In: Gerald Mayr: Paleogene Fossil Birds. Springer-Verlag, Berlin und Heidelberg, 2009, S. 44–47.
^Delphine Angst und Eric Buffetaut: Palaeobiology of Giant Flightless Birds. Oxford, 2017, S. 1–282 (S. 173–214).
^Meijer, Hanneke Johanna Maria (January 2014). "A peculiar anseriform (Aves: Anseriformes) from the Miocene of Gargano (Italy)". Comptes Rendus Palevol. 13 (1): 19–26. Bibcode:2014CRPal..13...19M. doi:10.1016/j.crpv.2013.08.001.
^Smith, N. Adam (February 2016). "Evolution of body mass in the Pan-Alcidae (Aves, Charadriiformes): the effects of combining neontological and paleontological data". Paleobiology. 42 (1): 8–26. Bibcode:2016Pbio...42....8S. doi:10.1017/pab.2015.24.
^Campbell, Kenneth; Scott, Eric; Springer, Kathleen (1999). "A new genus for the incredible teratorn". Smithsonian Contributions to Paleobiology. 89: 169–175 – via ResearchGate.
^Campbell, Kenneth E.; Tonni, Eduardo P. (April 1983). "Size and Locomotion in Teratorns (Aves: Teratornithidae)". The Auk. 100 (2): 390–403. doi:10.1093/auk/100.2.390.
^Tambussi, Claudia P.; Degrange, Federico J. (2013). "Neogene Birds of South America". South American and Antarctic Continental Cenozoic Birds. Springer Briefs in Earth System Sciences. Springer. pp. 59–86. doi:10.1007/978-94-007-5467-6_7. ISBN978-94-007-5466-9.
^Steadman, David W.; Almonte Milan, Juan N.; Mychajliw, Alexis M. (13 August 2019). "An Extinct Eagle (Aves: Accipitridae) from the Quaternary of Hispaniola". Journal of Raptor Research. 53 (3): 319. doi:10.3356/JRR-18-769.
^Suárez, William; Olson, Storrs L. (December 2007). "The Cuban Fossil Eagle Aquila Borrasi Arredondo: A Scaled-Up Version of the Great Black-Hawk Buteogallus Urubitinga (Gmelin)". Journal of Raptor Research. 41 (4): 288–298. doi:10.3356/0892-1016(2007)41[288:TCFEAB]2.0.CO;2.
^Olson, Storrs L. (2007). "The 'Walking Eagle' Wetmoregyps Daggetti Miller: A Scaled-up Version of the Savanna Hawk (Buteogallus meridionalis)". Ornithological Monographs (63): 110–114. doi:10.2307/40166902. JSTOR40166902.
^Zelenkov, N. V.; Lavrov, A. V.; Startsev, D. B.; Vislobokova, I. A.; Lopatin, A. V. (2019). "A giant early Pleistocene bird from eastern Europe: unexpected component of terrestrial faunas at the time of early Homo arrival". Journal of Vertebrate Paleontology. 39 (2): e1605521. Bibcode:2019JVPal..39E5521Z. doi:10.1080/02724634.2019.1605521. S2CID198384367.
^Arredondo, Oscar (1976) translated Olson, Storrs L. The Great Predatory Birds of the Pleistocene of Cuba pp. 169–187 in "Smithsonian Contributions to Paleobiology number 27; Collected Papers in Avian Paleontology Honoring the 90th Birthday of Alexander Wetmore"
^Naylor, Bruce G. (1981). "Cryptobranchid Salamanders from the Paleocene and Miocene of Saskatchewan". Copeia. 1981 (1): 76–86. doi:10.2307/1444042. JSTOR1444042.
^Wilson, Gregory P.; Clemens, William A.; Horner, John R.; Hartman, Joseph H. (21 January 2014). Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas. Geological Society of America. ISBN978-0-8137-2503-1.
^Panchen, A. L. (1977). "On Anthracosaurus russelli Huxley (Amphibia: Labyrinthodontia) and the Family Anthracosauridae". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 279 (968): 447–512. Bibcode:1977RSPTB.279..447P. doi:10.1098/rstb.1977.0096. JSTOR2417840.
^Panchen, A. L. (1972). "The Skull and Skeleton of Eogyrinus attheyi Watson (Amphibia: Labyrinthodontia)". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 263 (851): 279–326. Bibcode:1972RSPTB.263..279P. doi:10.1098/rstb.1972.0002. JSTOR2417176.
^Steyer, J. Sébastien; Damiani, Ross (May 2005). "A giant brachyopoid temnospondyl from the Upper Triassic or Lower Jurassic of Lesotho". Bulletin de la Société Géologique de France. 176 (3): 243–248. doi:10.2113/176.3.243.
^Albert, James S.; Johnson, Derek M.; Knouft, Jason H. (2009). "Fossils provide better estimates of ancestral body size than do extant taxa in fishes". Acta Zoologica. 90: 357–384. doi:10.1111/j.1463-6395.2008.00364.x.
^Ørvig, Tor (1967). "Some new acanthodian material from the Lower Devonian of Europe". Journal of the Linnean Society of London, Zoology. 47 (311): 131–153. doi:10.1111/j.1096-3642.1967.tb01400.x.
^Shimada, K.; Chandler, R. E.; Lam, O. L. T.; Tanaka, T.; Ward, D. J. (2016). "A new elusive otodontid shark (Lamniformes: Otodontidae) from the lower Miocene, and comments on the taxonomy of otodontid genera, including the "megatoothed" clade". Historical Biology. 29 (5): 1–11. doi:10.1080/08912963.2016.1236795. S2CID89080495.
^ abShimada, Kenshu (2019). "The size of the megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), revisited". Historical Biology. 33 (7): 1–8. doi:10.1080/08912963.2019.1666840. S2CID208570844.
^Pimiento, C.; MacFadden, B. J.; Clements, C. F.; Varela, S.; Jaramillo, C.; Velez-Juarbe, J.; Silliman, B. R. (2016). "Geographical distribution patterns of Carcharocles megalodon over time reveal clues about extinction mechanisms". Journal of Biogeography. 43 (8): 1645–1655. Bibcode:2016JBiog..43.1645P. doi:10.1111/jbi.12754. S2CID55776834.
^Portell, Roger W.; Hubbell, Gordon; Donovan, Stephen K.; Green, Jeremy L.; Harper, David A. T.; Pickerill, Ron (January 2008). "Miocene sharks in the Kendeace and Grand Bay formations of Carriacou, The Grenadines, Lesser Antilles". Caribbean Journal of Science. 44 (3): 279–286. doi:10.18475/cjos.v44i3.a2.
^Gottfried M.D., Fordyce R.E (2001). "An associated specimen of Carcharodon angustidens (Chondrichthyes, Lamnidae) from the Late Oligocene of New Zealand, with comments on Carcharodon interrelationships". Journal of Vertebrate Paleontology. 21 (4): 730–739. doi:10.1671/0272-4634(2001)021[0730:AASOCA]2.0.CO;2. S2CID86092645.
^Maisch, Michael W.; Matzke, Andreas T. (June 2016). "A new hybodontid shark (Chondrichthyes, Hybodontiformes) from the Lower Jurassic Posidonienschiefer Formation of Dotternhausen, SW Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 280 (3): 241–257. doi:10.1127/njgpa/2016/0577.
^Villalobos-Segura, E.; Kriwet, J.; Vullo, R.; Stumpf, S.; Ward, D.J.; Underwood, C.J. (2021). "The skeletal remains of the euryhaline sclerorhynchoid †Onchopristis (Elasmobranchii) from the 'Mid'-Cretaceous and their palaeontological implications". Zoological Journal of the Linnean Society. 193 (2): 746–771. doi:10.1093/zoolinnean/zlaa166.
^Shimada, Kenshu; Kirkland, James I. (2011). "A mysterious king-sized Mesozoic lungfish from North America". Transactions of the Kansas Academy of Science. 114 (1/2): 135–141. doi:10.1660/062.114.0114. JSTOR41309634. S2CID84698238.
^Jeffery, J.E. (2003). "Mandibles of rhizodontids: anatomy, function andevolution within the tetrapod stem-group". Transactions of the Royal Society of Edinburgh: Earth Sciences. 93 (3): 255–276. doi:10.1017/S0263593300000432. S2CID129517553.
^Nessov, L.A. (1997). Cretaceous nonmarine vertebrates of northern Eurasia. Saint Petersburg: University of Saint Petersburg Institute of Earth Crust, 218 pp. [in Russian].
^Grande, Lance; Bemis, William E. (1991). "Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes". Memoir (Society of Vertebrate Paleontology). 1: ii–121. doi:10.2307/3889328. JSTOR3889328.
^Liston, J., Newbrey, M., Challands, T., and Adams, C., 2013, "Growth, age and size of the Jurassic pachycormid Leedsichthys problematicus (Osteichthyes: Actinopterygii) in: Arratia, G., Schultze, H. and Wilson, M. (eds.) Mesozoic Fishes 5 – Global Diversity and Evolution. Verlag Dr. Friedrich Pfeil, München, Germany, pp. 145–175
^Martill, D.M., 1988, "Leedsichthys problematicus, a giant filter-feeding teleost from the Jurassic of England and France", Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1988 (11): 670–680
^[Ed.] "Catch the 100ft fish", The Mirror, London, England, 18 September 2003
^Grandstaff, B. S; Smith, J. B.; Lamanna, M. C.; Lacovara, K. J.; Abdel-Ghani, M. S. (2012). "Bawitius, gen. nov., a giant polypterid (Osteichthyes, Actinopterygii) from the Upper Cretaceous Bahariya Formation of Egypt". Journal of Vertebrate Paleontology. 32 (1): 17–26. Bibcode:2012JVPal..32...17G. doi:10.1080/02724634.2012.626823. S2CID140547157.
^Gottfried, Michael D.; Fordyce, R. Ewan; Rust, Seabourne (2006). "Megalampris keyesi, a Giant Moonfish (Teleostei, Lampridiformes) from the Late Oligocene of New Zealand". Journal of Vertebrate Paleontology. 6 (3): 544–551. doi:10.1671/0272-4634(2006)26[544:MKAGMT]2.0.CO;2. S2CID85849900.
^Gregorova, Ruzena; Schultz, Ortwin; Harzhauser, Mathias; Kroh, Andreas; Ćorić, Stjepan (12 June 2009). "A giant early Miocene sunfish from the North Alpine Foreland Basin (Austria) and its implication for molid phylogeny". Journal of Vertebrate Paleontology. 29 (2): 359–371. Bibcode:2009JVPal..29..359G. doi:10.1671/039.029.0201. S2CID54774567.
^Viñola Lopez, Lazaro W.; Carr, Richard; Lorenzo, Logel (20 October 2020). "First occurrence of fossil Balistes (Tetradontiformes: Balistidae) from the Miocene of Cuba with the description of a new species and a revision of fossil Balistes". Historical Biology. 32 (9): 1290–1299. Bibcode:2020HBio...32.1290V. doi:10.1080/08912963.2019.1580278. S2CID92003143.
^Anderson, Lyall I.; Poschmann, Markus; Brauckmann, Carsten (November 1998). "On the Emsian (Lower Devonian) arthropods of the Rhenish Slate Mountains: 2. The synziphosurineWillwerathia". Paläontologische Zeitschrift. 72 (3–4): 325–336. Bibcode:1998PalZ...72..325A. doi:10.1007/BF02988363.
^ abLamsdell, James C. (January 2013). "Revised systematics of Palaeozoic 'horseshoe crabs' and the myth of monophyletic Xiphosura: Re-evaluating the Monophyly of Xiphosura". Zoological Journal of the Linnean Society. 167 (1): 1–27. doi:10.1111/j.1096-3642.2012.00874.x.
^Jeram, Andrew J. (1993). "Scorpions from the Viséan of East Kirkton, West Lothian, Scotland, with a revision of the infraorder Mesoscorpionina". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 84 (3–4): 283–299. Bibcode:1993EESTR..84..283J. doi:10.1017/S0263593300006106.
^Kjellesvig-Waering, Erik N. (1972). "Brontoscorpio anglicus: A Gigantic Lower Paleozoic Scorpion from Central England". Journal of Paleontology. 46 (1): 39–42. JSTOR1302906.
^Whalen, Niall; Selden, Paul (May 2021). "A new, giant ricinuleid (Arachnida, Ricinulei), from the Pennsylvanian of Illinois, and the identification of a new, ontogenetically stable, diagnostic character". Journal of Paleontology. 95 (3): 601–612. Bibcode:2021JPal...95..601W. doi:10.1017/jpa.2020.104.
^Gutiérrez-Marco, Juan C.; Sá, Artur A.; Garcia-Bellido, Diego C.; Rabano, Isabel; Valério, Manuel (2009). "Giant Trilobites and Trilobite Clusters from the Ordovician of Portugal". Geology. 37 (5): 443–446. Bibcode:2009Geo....37..443G. doi:10.1130/G25513A.1.
^Archibald, S.B.; Rasnitsyn, A.P. (2015). "New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America". The Canadian Entomologist. 148 (2): 209–228. doi:10.4039/tce.2015.55. S2CID85743832.
^Ratcliffe, Brett C.; Smith, Dena M.; Erwin, Diane (March 2005). "Oryctoantiquus borealis, New Genus and Species from the Eocene of Oregon, U.S.A., the World's Oldest Fossil Dynastine and Largest Fossil Scarabaeid (Coleoptera: Scarabaeidae: Dynastinae)". The Coleopterists Bulletin. 59 (1): 127–135. doi:10.1649/0010-065X(2005)059[0127:OBNGAS]2.0.CO;2.
^Bechly, G.; Makarkin, V. N. (2016). "A new gigantic lacewing species (Insecta: Neuroptera) from the Lower Cretaceous of Brazil confirms the occurrence of Kalligrammatidae in the Americas". Cretaceous Research. 58: 135–140. Bibcode:2016CrRes..58..135B. doi:10.1016/j.cretres.2015.10.014.
^Huang, Jiandong; Ren, Dong; Sinitshenkova, Nina D.; Shih, Chungkun (2 November 2007). "New genus and species of Hexagenitidae (Insecta: Ephemeroptera) from Yixian Formation, China". Zootaxa. 1629 (1): 39–50. doi:10.11646/zootaxa.1629.1.3.
^Kukalová-Peck, Jarmila (April 1985). "Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida)". Canadian Journal of Zoology. 63 (4): 933–955. Bibcode:1985CaJZ...63..933K. doi:10.1139/z85-139.
^Sroka, Pavel; Staniczek, Arnold H.; Bechly, Günter (2 November 2015). "Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck, 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects". Journal of Systematic Palaeontology. 13 (11): 963–982. Bibcode:2015JSPal..13..963S. doi:10.1080/14772019.2014.987958. S2CID84037275.
^Kukalová-Peck, Jarmila; Richardson, Eugene S. (1983). "New Homoiopteridae (Insecta: Paleodictyoptera) with wing articulation from Upper Carboniferous strata of Mazon Creek, Illinois". Canadian Journal of Zoology. 61 (7): 1670–1687. Bibcode:1983CaJZ...61.1670K. doi:10.1139/z83-218.
^Hoell, H.V.; Doyen, J.T. & Purcell, A.H. (1998). Introduction to Insect Biology and Diversity (2nd ed.). Oxford University Press. p. 321. ISBN0-19-510033-6.
^Shear, William A.; Kukalová-Peck, Jarmila (September 1990). "The ecology of Paleozoic terrestrial arthropods: the fossil evidence". Canadian Journal of Zoology. 68 (9): 1807–1834. Bibcode:1990CaJZ...68.1807S. doi:10.1139/z90-262.
^Staniczek, Arnold H.; Sroka, Pavel; Bechly, GüNter (October 2014). "Neither silverfish nor fowl: the enigmatic C arboniferous Carbotriplura kukalovae K luge, 1996 (Insecta: C arbotriplurida) is the putative fossil sister group of winged insects (Insecta: P terygota)". Systematic Entomology. 39 (4): 619–632. Bibcode:2014SysEn..39..619S. doi:10.1111/syen.12076.
^Asato, Kaito; Kase, Tomoki (July 2021). "Gigantic scaphopods (Mollusca) from the Permian Akasaka Limestone, central Japan". Journal of Paleontology. 95 (4): 748–762. Bibcode:2021JPal...95..748A. doi:10.1017/jpa.2021.3.
^Klug, Christian; De Baets, Kenneth; Kröger, Björn; Bell, Mark A.; Korn, Dieter; Payne, Jonathan L. (April 2015). "Normal giants? Temporal and latitudinal shifts of Palaeozoic marine invertebrate gigantism and global change". Lethaia. 48 (2): 267–288. Bibcode:2015Letha..48..267K. doi:10.1111/let.12104.
^Iba, Yasuhiro; Sano, Shin-Ichi; Goto, Michiharu (January 2015). "Large Belemnites were Already Common in the Early Jurassic—New Evidence from Central Japan". Paleontological Research. 19 (1): 21–25. doi:10.2517/2014PR025. S2CID55001872.
^Fuchs, Dirk; Iba, Yasuhiro; Heyng, Alexander; Iijima, Masaya; Klug, Christian; Larson, Neal L.; Schweigert, Günter (February 2020). "The Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods". Papers in Palaeontology. 6 (1): 31–92. Bibcode:2020PPal....6...31F. doi:10.1002/spp2.1254.
^Tanabe, Kazushige; Hikida, Yoshinori; Iba, Yasuhiro (January 2006). "Two Coleoid Jaws from the Upper Cretaceous of Hokkaido, Japan". Journal of Paleontology. 80 (1): 138–145. doi:10.1666/0022-3360(2006)080[0138:TCJFTU]2.0.CO;2.
^Mychko, Eduard V.; Feldmann, Rodney M.; Schweitzer, Carrie E.; Alekseev, Alexander S. (25 October 2019). "New genus of Cyclida (Crustacea) from Lower Carboniferous (Mississippian, Viséan) of Russia and England and new species from Viséan of Russia". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 294 (1): 81–90. doi:10.1127/njgpa/2019/0847.
^Laflamme, M.; Narbonne, G. M.; Greentree, C.; Anderson, M. M. (January 2007). "Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland". Geological Society, London, Special Publications. 286 (1): 237–257. Bibcode:2007GSLSP.286..237L. doi:10.1144/sp286.17.