- determination of the concentration of manganese in the blood
- biochemical blood test: determination of the activity of ALT, ACT, LDH, creatine phosphokinase (CPK);
- indicators of protein metabolism,
- concentrations of thyroid hormones.Instrumental research.
EEG, CT, MRI, global EMG, ENMG data are evaluated.
In the early stages determine - the speed of motor and sensory reactions, the rate of attention, the amount of short-term memory, in later stages - productive memory, verbal-logical thinking, the level of personal and reactive anxiety, depression, neuroticism [medical citation needed]
Manganism or manganese poisoning is a toxic condition resulting from chronic exposure to manganese.[1] It was first identified in 1837 by James Couper.[2]
Chronic exposure to excessive manganese levels can lead to a variety of psychiatric and motor disturbances, termed manganism. Generally, exposure to ambient manganese air concentrations in excess of 5 micrograms Mn/m3 can lead to manganese-induced symptoms.[3]
In initial stages of manganism, neurological symptoms consist of reduced response speed, irritability, mood changes, and compulsive behaviors.[4] Upon protracted exposure symptoms are more prominent and resemble those of idiopathicParkinson's disease, as which it is often misdiagnosed, although there are particular differences in both the symptoms; for example, the nature of the tremors, response to drugs such as levodopa, and affected portion of the basal ganglia. Symptoms are also similar to Lou Gehrig's disease and multiple sclerosis.
Manganism has become an active issue in workplace safety as it has been the subject of numerous product liability lawsuits against manufacturers of arc welding supplies. In these lawsuits, welders have accused the manufacturers of failing to provide adequate warning that their products could cause welding fumes to contain dangerously high manganese concentrations that could lead welders to develop manganism. Companies employing welders are also being sued, for what colloquially is known as "welders' disease." However, studies fail to show any link between employment as a welder and manganism (or other neurological problems). [need quotation to verify][5][6][7]
Manganism is also documented in reports of illicit methcathinone manufacturing.[8] This is due to manganese being a byproduct of methcathinone synthesis if potassium permanganate is used as an oxidiser.[9] Symptoms include apathy, bradykinesia, gait disorder with postural instability, and spastic-hypokinetic dysarthria. Another street drug sometimes contaminated with manganese is the so-called "Bazooka", prepared by free-base methods from cocaine using manganese carbonate.[10]
Drinking water, fuel additive, Maneb, paint and steelmaking
Manganese may affect liver function, but the threshold of acute toxicity is very high. On the other hand, more than 95 percent of manganese is eliminated by biliary excretion. Any existing liver damage may slow this process, increasing its concentration in blood plasma.[17] The exact neurotoxic mechanism of manganese is uncertain but there are clues pointing at the interaction of manganese with iron,[18][19][20][21]zinc,[22]aluminum,[18][22] and copper.[22] Based on a number of studies, disturbed iron metabolism could underlie the neurotoxic action of manganese.[23] Manganese displaces Iron in the COQ7 hydroxylase enzyme required for coenzyme Q10 synthesis. Supplying CoQ6 (the yeast version of CoQ10) to yeast cells bathed in manganese solution restored mitochondrial function and survival.[24][25]
It participates in Fenton reactions and could thus induce oxidative damage, a hypothesis corroborated by the evidence from studies of affected welders.[26] A study of the exposed workers showed that they have significantly fewer children.[27] This may indicate that long-term accumulation of manganese affects fertility. Pregnant animals repeatedly receiving high doses of manganese bore malformed offspring significantly more often compared to controls.[28]
The current mainstay of manganism treatment is levodopa and chelation with EDTA. Both have limited and at best transient efficacy. Replenishing the deficit of dopamine with levodopa has been shown to initially improve extrapyramidal symptoms,[29][30][31] but the response to treatment goes down after 2 or 3 years,[32] with worsening condition of the same patients noted even after 10 years since last exposure to manganese.[33] Enhanced excretion of manganese prompted by chelation therapy brings its blood levels down but the symptoms remain largely unchanged, raising questions about efficacy of this form of treatment.[34][35]
Increased ferroportin protein expression in human embryonic kidney (HEK293) cells is associated with decreased intracellular manganese concentration and attenuated cytotoxicity, characterized by the reversal of manganese-reduced glutamate uptake and diminished lactate dehydrogenase (LDH) leakage.[3]
The Red River Delta near Hanoi has high levels of manganese and arsenic in the water. Approximately 65 percent of the region’s wells contain high levels of arsenic, manganese, selenium, and barium.[36]
^
Silva Avila, Daiana; Luiz Puntel, Robson; Aschner, Michael (2013). "Chapter 7. Manganese in Health and Disease". In Astrid Sigel, Helmut Sigel and Roland K. O. Sigel (ed.). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. Vol. 13. Springer. pp. 199–227. doi:10.1007/978-94-007-7500-8_7. ISBN978-94-007-7499-5. PMC6589086. PMID24470093.
^Marsh GM, Gula MJ (October 2006). "Employment as a welder and Parkinson disease among heavy equipment manufacturing workers". Journal of Occupational and Environmental Medicine. 48 (10): 1031–46. doi:10.1097/01.jom.0000232547.74802.d8. PMID17033503. S2CID1355456.
^de Bie RM, Gladstone RM, Strafella AP, Ko JH, Lang AE (June 2007). "Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse". Arch. Neurol.64 (6): 886–9. doi:10.1001/archneur.64.6.886. PMID17562938.
^Ensing, J. G. (1985). "Bazooka: Cocaine-Base and Manganese Carbonate". Journal of Analytical Toxicology. 9 (1): 45–46. doi:10.1093/jat/9.1.45. PMID3981975.
^Kondakis, Xenophon G.; Makris, Nicolas; Leotsinidis, Michael; Prinou, Mary; Papapetropoulos, Theodore (1989). "Possible Health Effects of High Manganese Concentration in Drinking Water". Archives of Environmental Health. 44 (3): 175–178. doi:10.1080/00039896.1989.9935883. PMID2751354.
^Hudnell, HK (1999). "Effects from environmental manganese exposures: A review of the evidence from non-occupational exposure studies". Neurotoxicology. 20 (2–3): 379–397. PMID10385898.
^Lynam, DR; Roos, JW; Pfeifer, GD; Fort, BF; Pullin, TG (1999). "Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline". Neurotoxicology. 20 (2–3): 145–150. PMID10385878.
^Reynolds JG, Roos JW, Wong J, Deutsch SE. Manganese particulates from vehicles using MMT fuel. In 15th International Neurotoxicology Conference, Little Rock, AR, 1997.
^Ferraz, H. B.; f. Bertolucci, P. H.; Pereira, J. S.; Lima, J.G.C.; f. Andrade, L. A. (1988). "Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication". Neurology. 38 (4): 550–553. doi:10.1212/WNL.38.4.550. PMID3352909. S2CID20400188.
^Lauwerys, Robert (1985). "Fertility of male workers exposed to mercury vapor or to manganese dust: A questionnaire study". American Journal of Industrial Medicine. 7 (2): 171–176. doi:10.1002/ajim.4700070208. PMID3976664.
^Treinen, Kimberley A.; Gray, Tim J. B.; Blazak, William F. (1995). "Developmental toxicity of mangafodipir trisodium and manganese chloride in Sprague-Dawley rats". Teratology. 52 (2): 109–115. doi:10.1002/tera.1420520207. PMID8588182.
^Mena I, Court J, Fuenzalida S, Papavasiliou PS, Cotzias GC (1970). "Modification of chronic manganese poisoning. Treatment with L-dopa or 5-OH tryptophane". N Engl J Med. 282 (1): 5–10. doi:10.1056/NEJM197001012820102. PMID5307796.
^Rosenstock HA, Simons DG, Meyer JS (1971). "Chronic manganism. Neurologic and laboratory studies during treatment with levodopa". JAMA. 217 (10): 1354–8. doi:10.1001/jama.217.10.1354. PMID4998860.
^Huang, C.-C.; Lu, C.-S.; Chu, N.-S.; Hochberg, F.; Lilienfeld, D.; Olanow, W.; Calne, D. B. (1993). "Progression after chronic manganese exposure". Neurology. 43 (8): 1479–83. doi:10.1212/WNL.43.8.1479. PMID8351000. S2CID12621501.
^Huang, C.-C.; Chu, N.-S.; Lu, C.-S.; Chen, R.-S.; Calne, D. B. (1998). "Long-term progression in chronic manganism: Ten years of follow-up". Neurology. 50 (3): 698–700. doi:10.1212/WNL.50.3.698. PMID9521259. S2CID34347615.
^Ono, Kenjiro; Komai, Kiyonobu; Yamada, Masahito (2002). "Myoclonic involuntary movement associated with chronic manganese poisoning". Journal of the Neurological Sciences. 199 (1–2): 93–96. doi:10.1016/S0022-510X(02)00111-9. PMID12084450. S2CID40327454.
^Calne, DB; Chu, NS; Huang, CC; Lu, CS; Olanow, W (1994). "Manganism and idiopathic parkinsonism: Similarities and differences". Neurology. 44 (9): 1583–1586. doi:10.1212/WNL.44.9.1583. PMID7936278. S2CID28563940.
Lucchini, Roberto; Tieu, Kim (30 July 2023). "Manganese-Induced Parkinsonism: Evidence from Epidemiological and Experimental Studies". Biomolecules. 13 (8): 1190. doi:10.3390/biom13081190. PMC10452806. PMID37627255. Acute high dose exposure typically causes manganism and the globus pallidus is the primary target. Chronic, low-level exposure extends Mn deposition and toxicity to other brain regions, including the substantia nigra. When combined with other PD-linked gene products such as α-synuclein, parkin, DJ-1, and ATP13A2, it is likely that Mn contributes to the onset and progression of idiopathic PD ... therefore, it is imperative to control this modifiable factor and eliminate all possible causes of overexposure and long-term absorption of low doses.
Antonini, James M. (2003). "Health Effects of Welding". Critical Reviews in Toxicology. 33 (1): 61–103. doi:10.1080/713611032. PMID12585507. S2CID26661513. — Critical review including manganese discussion from National Institute for Occupational Safety and Health (NIOSH)